
 

JPL Publication 12-17 

Moderate Resolution Imaging 

Spectroradiometer (MODIS) MOD21 Land 

Surface Temperature and Emissivity 

Algorithm Theoretical Basis Document 

 

G. Hulley 

S. Hook 

T. Hughes 

Jet Propulsion Laboratory 

 

 

 

 

 

 

 

 

National Aeronautics and 

Space Administration 

Jet Propulsion Laboratory 

California Institute of Technology 

Pasadena, California 

August 2012 

 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

 

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a 

contract with the National Aeronautics and Space Administration. 

 

Reference herein to any specific commercial product, process, or service by trade name, trademark, 

manufacturer, or otherwise, does not constitute or imply its endorsement by the United States 

Government or the Jet Propulsion Laboratory, California Institute of Technology. 

 

© 2012. California Institute of Technology. Government sponsorship acknowledged. 

  



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

Revisions: 

 

08/17/2012: Version 1.0 draft by Glynn Hulley 

 

11/02/12: Section 10: Validation, updated by Glynn Hulley  

 

11/19/2012: Edited by Peter Basch, Technical Editor/Writer, Jet Propulsion Laboratory 

 

03/27/2014: Updated Table 2 to correct an error in the calculation of sky irradiance 

coefficients. Updated Table 3 and 4 WVS and bmp coefficients which are now valid for view 

angles up to 65 degrees and for a more diverse set of global atmospheric conditions. 

 

 

Reviews: 

 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

2 

Contacts 

 

Readers seeking additional information about this study may contact the following researchers: 

 

Glynn C. Hulley  

MS 183-501 

Jet Propulsion Laboratory 

4800 Oak Grove Dr. 

Pasadena, CA 91109 

Email: glynn.hulley@jpl.nasa.gov 

Office: (818) 354-2979 

 

Simon J. Hook  

MS 183-501 

Jet Propulsion Laboratory 

4800 Oak Grove Dr. 

Pasadena, CA 91109 

Email: simon.j.hook@jpl.nasa.gov 

Office: (818) 354-0974 

 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

3 

Contents 

Contacts ......................................................................................................................................... 2 

1 Introduction .......................................................................................................................... 8 

2 MODIS Background .......................................................................................................... 10 
2.1 Calibration................................................................................................................... 10 
2.2 Instrument Characteristics .......................................................................................... 11 
2.3 LST&E Standard Products .......................................................................................... 11 

3 Earth Science Relevance .................................................................................................... 14 
3.1 Use of LST&E in Climate/Ecosystem Models ........................................................... 14 

3.2 Use of LST&E in Cryospheric Research .................................................................... 15 
3.3 Use of LST&E in Atmospheric Retrieval Schemes .................................................... 16 

4 Atmospheric Correction .................................................................................................... 17 
4.1 Thermal Infrared Radiance ......................................................................................... 17 

4.2 Emissivity ................................................................................................................... 21 
4.3 Radiative Transfer Model ........................................................................................... 21 

4.4 Atmospheric Profiles .................................................................................................. 22 
4.5 Radiative Transfer Sensitivity Analysis ...................................................................... 24 

5 Water Vapor Scaling Method ........................................................................................... 26 
5.1 Gray Pixel Computation ............................................................................................. 27 
5.2 Interpolation and Smoothing....................................................................................... 29 

5.3 Scaling Atmospheric Parameters ................................................................................ 31 
5.3.1 Transmittance and Path Radiance .................................................................... 31 
5.3.2 Downward Sky Irradiance ................................................................................ 31 

5.4 Calculating the EMC/WVD Coefficients ................................................................... 32 

6 Temperature and Emissivity Separation Approaches .................................................... 35 
6.1 Deterministic Approaches ........................................................................................... 35 

6.1.1 SW Algorithms ................................................................................................. 35 

6.1.2 Single-Band Inversion ...................................................................................... 37 
6.1.3 Non-deterministic Approaches ......................................................................... 37 

6.2 TES Algorithm ............................................................................................................ 40 
6.2.1 TES Data Inputs ............................................................................................... 40 
6.2.2 TES Limitations ............................................................................................... 41 
6.2.3 TES Processing Flow ....................................................................................... 42 
6.2.4 NEM Module .................................................................................................... 45 

6.2.5 Subtracting Downwelling Sky Irradiance ........................................................ 45 

6.2.6 Refinement of     ........................................................................................ 46 
6.2.7 Ratio Module .................................................................................................... 47 
6.2.8 MMD Module ................................................................................................... 47 

6.2.9 MMD vs.      Regression ............................................................................. 50 

6.2.10 Atmospheric Effects ......................................................................................... 52 

7 Advantages of TES over SW approaches ........................................................................ 53 
7.1 Land Cover Misclassification ..................................................................................... 54 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

4 

7.2 Emissivity Error within Cover Type ........................................................................... 55 

7.3 Soil Moisture Effects .................................................................................................. 56 

8 Quality Assessment and Diagnostics ................................................................................ 57 

9 Uncertainty Analysis .......................................................................................................... 60 
9.1 The Temperature and Emissivity Uncertainty Simulator ........................................... 60 
9.2 Atmospheric Profiles .................................................................................................. 61 
9.3 Radiative Transfer Model ........................................................................................... 61 
9.4 Surface End-Member Selection .................................................................................. 61 
9.5 Radiative Transfer Simulations................................................................................... 62 

9.6 Error Propagation ........................................................................................................ 64 
9.7 Parameterization of Uncertainties ............................................................................... 67 

10 Validation............................................................................................................................ 70 
10.1 Water Sites .................................................................................................................. 71 
10.2 Vegetated Sites............................................................................................................ 72 
10.3 Pseudo-invariant Sand Dune Sites .............................................................................. 73 

10.3.1 Emissivity Validation ....................................................................................... 74 
10.3.2 LST Validation ................................................................................................. 76 

11 References ........................................................................................................................... 80 
 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

5 

Figures 

Figure 1. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere (blue) 

in the 3–12 µm region. Also shown is the solar irradiance contribution W/m
2
/µm

2
. ....................................... 18 

Figure 2. Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and at-sensor 

radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz emissivity 

spectrum, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show placements of 

the MODIS TIR bands 29 (8.55 µm), 31 (11 µm), and 32 (12 µm). ............................................................... 19 
Figure 3. MODIS spectral response functions for bands 29 (red), 31 (green), and 32 (blue) plotted with a typical 

transmittance curve for a mid-latitude summer atmosphere. ........................................................................... 20 
Figure 4. Bias and RMS differences between Aqua MODIS MOD07, AIRS v4 operational temperature and moisture 

profiles and the “best estimate of the atmosphere” (Tobin et al. 2006) dataset for 80 clear sky cases over 

the SGP ARM site. From Seemann et al. (2006). ............................................................................................ 24 
Figure 5. Clockwise from top left: Google Earth visible image; first guess gray-pixel map; TLR refinement; and 

final gray pixel map for a MODIS scene cutout over parts of Arizona and southeastern California 

(black = graybody, white = bare) on 29 August 2004. See text for details. ..................................................... 29 
Figure 6. MODIS MOD07 total column water vapor (left) and WVS factor,  , (right) computed using equation (5) 

for a MODIS scene cutout on 29 August 2004. The image has been interpolated and smoothed using the 

techniques discussed in section 5.2. ................................................................................................................. 31 
Figure 7. Comparisons between the atmospheric transmittance (top), path radiance (W/m

2
/µm

1
) (middle), and 

computed surface radiance (W/m
2
/µm

1
) (bottom), before and after applying the WVS scaling factor   to a 

MODIS scene cutout shown in Figure 5. Results are shown for MODIS band 29 (8.55 µm). ........................ 33 
Figure 8. ASTER (left panels) and MODIS (right panels) LST uncertainty distributions plotted versus TCW and 

simulated LST for all end-member surface types (graybody, soils, sands, and rocks), for the TES algorithm 

including atmospheric error (TES+atm) and with the WVS method applied (TES+atm+wvs). ...................... 42 
Figure 9. Flow diagram showing all steps in the retrieval process in generating the MODIS MOD21 LST&E product 

starting with TIR at-sensor radiances and progressing through atmospheric correction, cloud detection, and 

the TES algorithm. ........................................................................................................................................... 43 
Figure 10. Flow diagram of the TES algorithm in its entirety, including the NEM, RATIO, and MMD modules. 

Details are included in the text, including information about the refinement of     . ................................. 44 
Figure 11. Clockwise from top left: MODIS cutouts of land surface emissivity for band 29 (8.55 µm); band 31 (11 

µm), surface temperature (K) and band 32 emissivity (12 µm); output from the TES algorithm over the 

Imperial Valley, southeastern California on 29 August 2004. ......................................................................... 49 
Figure 12. MODIS derived TES and NEM emissivity spectra for three different surface types for the MODIS cutout 

shown in Figure 11: Algodones Dunes, Salton Sea, and shrublands (mixed soil and vegetation). Details of 

the TES and NEM outputs from these spectra are shown in Table 5. .............................................................. 49 
Figure 13. MODIS and ASTER calibration curves of minimum emissivity vs. MMD. The lab data (crosses) are 

computed from 150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, 

vegetation, and ice). ......................................................................................................................................... 51 
Figure 14. Emissivity spectra comparisons on June 15, 2000 over the Salton Sea between ASTER (3-band), ASTER 

(5-band), and MODTES, using the TES algorithm along with lab spectra of water from the ASTER 

spectral library. Results from the WVS method and the STD atmospheric correction are also shown. An 

estimate of the PWV from the MOD07 atmospheric product indicates very high humidity on this day. ........ 53 
Figure 15. Emissivity images (left) and surface temperature images (right) for ASTER (top), MODIS TES 

(MODTES) (center) and MODIS SW (MOD11_L2) (bottom) products over the Station Fire burn scar just 

north of Pasadena, CA. Location of JPL in Pasadena and burn scar area indicated at top right. MODTES 

and ASTER results match closely; however, the MOD11_L2 temperatures are underestimated by as much 

as 12 K, due to an incorrect emissivity classification. ..................................................................................... 55 
Figure 16. (left) ASTER band 12 (9.1 µm) emissivity image over Mauna Loa caldera, Hawaii on 5 June 2000, and 

(right) emissivity spectra from ASTER, MODTES, and MOD11 emissivity classification. While ASTER 

and MODTES agree closely, MOD11 emissivities are too high, resulting in large LST discrepancies 

between MODTES and MOD1 (12 K) due to misclassification in bands 31 (11 µm) and 32 (12 µm). .......... 56 
Figure 17. (top) Emissivity variation for a rainfall event over the Namib desert showing results from MOD11B1 v4 

(day/night algorithm), MOD11_L2 (SW), and MODIS TES (MODTES). (bottom) Corresponding soil 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

6 

moisture variation from AMSRE-E and rainfall estimates from the Tropical Rainfall Measuring Mission 

(TRMM). It is clear that the physical retrievals, show increases in emissivity due to soil moisture, whereas 

the SW values are held constant throughout the rainfall period from 15–21 April. From Hulley et al. 

(2010). .............................................................................................................................................................. 57 
Figure 18. MODIS LST uncertainties using the TES algorithm versus TCW for four viewing Gaussian angles of 0°, 

26.1°, 40.3°, and 53.7°. The value n represents the number of data points used for a specific land surface 

type, in this case bare surfaces (rocks, soils, sands). ........................................................................................ 66 
Figure 19. MODIS TES retrievals including WVS correction over the southwestern United States on 7 August 2004: 

(a) (top left) LST, (b) (top right) emissivity for band 29 (8.55 µm), (c) (bottom left) LST uncertainty, and 

(d) (bottom right) emissivity uncertainty for band 29 (8.55 µm). White areas over land indicate areas of 

cloud that have been masked out using the MOD35 cloud mask product. ...................................................... 69 
Figure 20. Difference between the MODIS (MOD11_L2) and ASTER (AST08) LST products and in-situ 

measurements at Lake Tahoe. The MODIS product is accurate to ±0.2 K, while the ASTER product has a 

bias of 1 K due to residual atmospheric correction effects. ............................................................................. 72 
Figure 21. Laboratory-measured emissivity spectra of sand samples collected at ten pseudo-invariant sand dune 

validation sites in the southwestern United States. The sites cover a wide range of emissivities in the TIR 

region. .............................................................................................................................................................. 75 
Figure 22. ASTER false-color visible images (top) and emissivity spectra comparisons between ASTER TES and 

lab results for Algodones Dunes, California; White Sands, New Mexico; and Great Sands, Colorado 

(bottom). Squares with blue dots indicate the sampling areas. ASTER error bars show temporal and spatial 

variation, whereas lab spectra show spatial variation. ..................................................................................... 75 
Figure 23. An example of the R-based validation method applied to the MODIS Aqua MOD11 and MOD21 LST 

products over six pseudo-invariant sand dune sites using all data during 2005. AIRS profiles and lab-

measured emissivities from samples collected at the sites were used for the R-based calculations. ............... 79 

 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

7 

Tables 

Table 1. Percent changes in simulated at-sensor radiances for changes in input geophysical parameters for MODIS 

bands 29, 31, and 32, with equivalent change in brightness temperature in parentheses. ................................ 25 
Table 2. MODIS-Terra regression coefficients for equation 13. ..................................................................................... 32 
Table 3. MODIS-Terra EMC/WVD coefficients used in equation (5). ........................................................................... 34 
Table 4. MODIS-Terra  band model parameters in equation (6). .................................................................................... 34 
Table 5. Output from various stages of the MODTES algorithm for three surface types: sand dunes, Salton Sea, and 

shrubland transition zone for a MODIS test scene over the Imperial Valley, southeastern California. ........... 47 
Table 6. Quality assurance (QA) data plane 1 description of the three data fields: data quality, cloud mask, and cloud 

adjacency. ........................................................................................................................................................ 59 
Table 7. Quality assurance (QA) data plane 2 description of output diagnostics from the TES algorithm. .................... 59 
Table 8. The core set of global validation sites according to IGBP class to be used for validation and calibration of 

the MODIS MOD21 land surface temperature and emissivity product. .......................................................... 71 
Table 9. R-based LST validation statistics from six pseudo-invariant sand dune sites using all MOD11 and MOD21 

LST retrievals during 2005. ............................................................................................................................. 78 
Table 10. Emissivity comparisons between lab, MOD11, and MOD21 at six pseudo-invariant sand sites. ................... 78 

 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

8 

1 Introduction 

This document outlines the theory and methodology for generating the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Level-2 daily daytime and nighttime 1-km land 

surface temperature (LST) and emissivity product using the Temperature Emissivity Separation 

(TES) algorithm. The MODIS-TES (MOD21_L2) product, will include the LST and emissivity 

for three MODIS thermal infrared (TIR) bands 29, 31, and 32, and will be generated for data 

from the NASA-EOS AM and PM platforms. This is version 1.0 of the ATBD and the goal is 

maintain a ‘living’ version of this document with changes made when necessary. The current 

standard baseline MODIS LST products (MOD11*) are derived from the generalized split-

window (SW) algorithm (Wan and Dozier 1996), which produces a 1-km LST product and two 

classification-based emissivities for bands 31 and 32; and a physics-based day/night algorithm 

(Wan and Li 1997), which produces a 5-km (C4) and 6-km (C5) LST product and emissivity for 

seven MODIS bands: 20, 22, 23, 29, 31–33. 

The land surface temperature and emissivity (LST&E) are derived from the surface 

radiance that is obtained by atmospherically correcting the at-sensor radiance. LST&E data are 

used for many Earth surface related studies such as surface energy balance modeling (Zhou et al. 

2003b) and land-cover land-use change detection (French et al. 2008), while they are also critical 

for accurately retrieving important climate variables such as air temperature and relative 

humidity (Yao et al. 2011). The LST is an important long-term climate indicator, and a key 

variable for drought monitoring over arid lands (Anderson et al. 2011a; Rhee et al. 2010). The 

LST is an input to ecological models that determine important variables used for water use 

management such as evapotranspiration and soil moisture (Anderson et al. 2011b). Multispectral 

emissivity retrievals are also important for Earth surface studies. For example, emissivity 

spectral signatures are important for geologic studies and mineral mapping studies (Hook et al. 

2005; Vaughan et al. 2005). This is because emissivity features in the TIR region are unique for 

many different types of materials that make up the Earth’s surface, such as quartz, which is 

ubiquitous in most of the arid regions of the world. Emissivities are also used for land use and 

land cover change mapping since vegetation fractions can often be inferred if the background 

soil is observable (French et al. 2008). Accurate knowledge of the surface emissivity is critical 
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for accurately recovering the LST, especially over land where emissivity variations can be large 

both spectrally and spatially.  

The MODTES algorithm derives its heritage from the ASTER TES algorithm (Gillespie 

et al. 1998). ASTER is a five-channel multispectral TIR scanner that was launched on NASA’s 

Terra spacecraft in December 1999 with a 90-m spatial resolution and revisit time of 16 days. 

The MODTES LST&E products will be produced globally over all land cover types, excluding 

open oceans for all cloud-free pixels. It is anticipated that the Level-2 products will be merged to 

produce weekly, monthly, and seasonal products, with the monthly product most likely 

producing global coverage, depending on cloud coverage. The generation of the higher level 

merged products will be considered a project activity. The MODTES Level 2 products will be 

initially inter-compared with the standard MOD11 products to identify regions and conditions for 

divergence between the products, and validation will be accomplished using a combination of 

temperature-based (T-based) and radiance-based (R-based) methods over dedicated field sites.  

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral “window” regions: the midwave 

infrared (3.5–5 µm) and the thermal infrared (8–13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the 

separate contribution from each component in a radiometric measurement is an ill-posed problem 

since there will always be more unknowns—N emissivities and a single temperature—than the 

number of measurements, N, available. For MODIS, we will be solving for one temperature and 

three emissivities (MODIS TIR bands 29, 31, and 32). To solve the ill-posed problem, an 

additional constraint is needed, independent of the data. There have been numerous theories and 

approaches over the past two decades to solve for this extra degree of freedom. For example, the 

ASTER Temperature Emissivity Working Group (TEWG) analyzed ten different algorithms for 

solving the problem (Gillespie et al. 1999). Most of these relied on a radiative transfer model to 

correct at-sensor radiance to surface radiance and an emissivity model to separate temperature 

and emissivity. Other approaches include the SW algorithm, which extends the sea-surface 

temperature (SST) SW approach to land surfaces, assuming that land emissivities in the window 

region (10.5–12 µm) are stable and well known. However, this assumption leads to unreasonably 

large errors over barren regions where emissivities have large variations both spatially and 

spectrally. The ASTER TEWG finally decided on a hybrid algorithm, termed the TES algorithm, 
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which capitalizes on the strengths of previous algorithms with additional features (Gillespie et al. 

1998).  

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. TES 

uses an empirical relationship to predict the minimum emissivity that would be observed from a 

given spectral contrast, or minimum-maximum difference (MMD) (Kealy and Hook 1993; 

Matsunaga 1994). The empirical relationship is referred to as the calibration curve and is derived 

from a subset of spectra in the ASTER spectral library (Baldridge et al. 2009). A MODIS 

calibration curve, applicable to MODIS TIR bands 29, 31, and 32 will be computed. Numerical 

simulations have shown that TES is able to recover temperatures within 1.5 K and emissivities 

within 0.015 for a wide range of surfaces and is a well-established physical algorithm that 

produces seamless images with no artificial discontinuities such as might be seen in a land 

classification type algorithm (Gillespie et al. 1998). 

The remainder of the document will discuss the MODIS instrument characteristics, 

provide a background on TIR remote sensing, give a full description and background on the TES 

algorithm, provide quality assessment, discuss numerical simulation studies and uncertainty 

analysis, and, finally, outline a validation plan. 

2 MODIS Background 

The MODIS sensors on NASA’s Terra (AM) and Aqua (PM) platforms are currently the 

flagship instruments for global studies of Earth’s surface, atmosphere, cryosphere, and ocean 

processes (Justice et al. 1998; Salomonson et al. 1989). In terms of LST&E products, the 

strength of the MODIS is its ability to retrieve daily data at 1 km for both day- and nighttime 

observations on a global scale.  

2.1 Calibration 

There are now multiple satellite sensors that measure the mid- and thermal infrared 

radiance emitted from the Earth’s surface in multiple spectral channels. These sensors include 

the Advanced Along Track Scanning Radiometer (AATSR), ASTER, Advanced Very High 

Resolution Radiometer (AVHRR), and MODIS instruments. A satellite calibration 

interconsistency study is currently underway for evaluating the interconsistency of these sensors 
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at the Lake Tahoe and Salton Sea cal/val sites. This effort has indicated that further work is 

needed to consistently inter-calibrate the ATSR series and AVHRR series whereas ASTER and 

MODIS have a clearly defined calibration and well-understood performance.  

In-flight performance of TIR radiance data (3–14 µm) used in LST&E products is 

typically determined through comparison with ground validation sites. Well-established 

automated validation sites at Lake Tahoe, CA/NV, and Salton Sea, CA have been used to 

validate the TIR data from numerous sensors including ASTER and MODIS (Hook et al. 2007). 

Results from this work demonstrate that the MODIS (Terra and Aqua) instruments have met 

their required radiometric calibration accuracy of 0.5–1% in the TIR bands used to retrieve 

LST&E with differences of ±0.25% (~0.16K) for the lifetime of the missions. Similar work for 

ASTER indicates its performance also meets the 1% requirements, provided additional steps are 

taken to account for drift between calibrations (Tonooka et al. 2005).  

2.2 Instrument Characteristics 

The MODIS instrument acquires data in 36 spectral channels in the visible, near infrared, 

and infrared wavelengths. Infrared channels 20, 22, 23, 29, 31, and 32 are centered on 3.79, 3.97, 

4.06, 8.55, 11.03, and 12.02 μm respectively. Channels 29, 31, and 32 are the focus of the 

MODTES algorithm. MODIS scans 55° from nadir and provides daytime and nighttime 

imaging of any point on the Earth every 1–2 days with a continuous duty cycle. MODIS data are 

quantized in 12 bits and have a spatial resolution of ~1 km at nadir. They are calibrated with a 

cold space view and full aperture blackbody viewed before and after each Earth view. A more 

detailed description of the MODIS instrument and its potential application can be found in 

Salomonson et al. (1989) and Barnes et al. (1998). The MODIS sensor is flown on the Terra and 

Aqua spacecraft launched in 1999 and 2002, respectively. 

2.3 LST&E Standard Products 

Current standard LST&E products (MOD11 from Terra, and MYD11 from Aqua) are 

generated by two different algorithms: a generalized split-window (GSW) algorithm (product 

MOD11_L2) (Wan and Dozier 1996) that produces LST data at 1-km resolution, and a day/night 

algorithm (product MOD11B1) (Wan and Li 1997) that produces LST&E data at ~5 km (C4) 

and ~6 km (C5) resolution.  
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The GSW algorithm extends the SST SW approach to land surfaces. In this approach the 

emissivity of the surface is assumed to be known based on an a priori classification of the Earth 

surface into a selected number of cover types and a dual or multichannel SW algorithm is used in 

much the same way as with the oceans. This approach has been adopted by the MODIS and 

VIIRS emissivity product teams. The MODIS algorithm estimates the emissivity of each pixel by 

consulting the MODIS land cover product (MOD12Q1) whose values are associated with 

laboratory-measured emissivity spectra (Snyder et al. 1998). Adjustments are made for TIR 

BRDF, snow (from MOD10_L2 product), and green vs. senescent vegetation. The a priori 

approach works well for surfaces whose emissivity can be correctly assigned based on the 

classification but less well for surfaces whose emissivities differ from the assigned emissivity. 

Specifically, it is best suited for land-cover types such as dense evergreen canopies, lake 

surfaces, snow, and most soils, all of which have stable emissivities known to within 0.01. It is 

significantly less reliable over arid and semi-arid regions. 

The day/night approach uses pairs of daytime and nighttime observations in seven 

MODIS mid-infrared (MIR) and TIR bands (bands 20, 22, 23, 29, and 31–33) to simultaneously 

retrieve LST&E. This approach was designed to overcome the ill-posed thermal retrieval 

problem (where there are always more unknowns than independent equations in a given sample) 

by using two independent samples of the same target separated in time. The resulting system of 

equations can then be solved, provided several key assumptions are met. These include: a) the 

difference in surface temperature between the two samples must be large; b) the surface 

conditions (i.e., the emissivity spectrum) must not change between day and night samples; c) the 

geolocation of the samples must be highly accurate; and d) emissivity angular anisotropy must 

not be significant. In summary, it assumes that differences in the spectral radiances between the 

two samples are caused by surface temperature change and nothing else. In the MODIS 

implementation, the cloud-free day/night samples must be within 32 days of each other. The day-

night approach is more complicated to implement due to data storing; however, it is considered 

preferable to the a priori method in areas where emissivity is difficult to accurately predict—

most notably in semi-arid and arid areas. This algorithm is not well suited for polar regions since 

the signal-to-noise of observations in band 20 of the MIR are unacceptably low. Similarly, this 

product has limitations over very warm targets (e.g., arid and semi-arid regions) due to saturation 

of the MIR bands. 
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Two methods have been used for validating MODIS LST data products; these are a 

conventional T-based method and an R-based method (Wan and Li 2008). The T-based method 

requires ground measurements over thermally homogenous sites concurrently with the satellite 

overpass, while the R-based method relies on a radiative closure simulation in a clear 

atmospheric window region to estimate the LST from top of atmosphere (TOA) observed 

brightness temperatures, assuming the emissivity is known from ground measurements. The 

MOD11_L2 LST product has been validated with a combination of T-based and R-based 

methods over more than 19 types of thermally homogenous surfaces such as lakes (Hook et al. 

2007), at dedicated field campaign sites over agricultural fields and forests (Coll et al. 2005), 

playas and grasslands (Wan et al. 2004; Wan 2008), and for a range of different seasons and 

years. LST errors are generally within ±1 K for all sites under stable atmospheric conditions 

except semi-arid and arid areas that had errors of up to 5 K (Wan and Li 2008). 

At the University of Wisconsin, a monthly MODIS global infrared land surface 

emissivity database (UWIREMIS) has been developed based on the standard MOD11B1 

emissivity product (Seemann et al. 2008) at ten wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 

12.1, and 14.3 m) with 5 km spatial resolution. The baseline fit method, based on a conceptual 

model developed from laboratory measurements of surface emissivity, is applied to fill in the 

spectral gaps between the six available MODIS/MYD11 bands. The ten wavelengths in the 

UWIREMIS emissivity database were chosen as hinge points to capture as much of the shape of 

the higher resolution emissivity spectra as possible, and extended by Borbas et al. (2007) to 

provide 416 spectral points from 3.6 to 14.3 µm. The algorithm is based on a Principal 

Component Analyses (PCA) regression using the eigenfunction representation of high spectral 

resolution laboratory measurements from the ASTER spectral library (Baldridge et al. 2009).  
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3 Earth Science Relevance 

LST&E are key variables for explaining the biophysical processes that govern the 

balances of water and energy at the land surface. LST&E data are used in many research areas 

including ecosystem models, climate models, cryospheric research, and atmospheric retrievals 

schemes. Our team has been carefully selected to include expertise in these areas. The 

descriptions below summarize how LST&E data are typically used in these areas.  

3.1 Use of LST&E in Climate/Ecosystem Models 

Emissivity is a critical parameter in climate models that determine how much thermal 

radiation is emitted back to the atmosphere and space and therefore is needed in surface radiation 

budget calculations, and also to calculate important climate variables such as LST (e.g., Jin and 

Liang 2006; Zhou et al. 2003b). Current climate models represent the land surface emissivity by 

either a constant value or very simple parameterizations due to the limited amount of suitable 

data. Land surface emissivity is prescribed to be unity in the Global Climate Models (GCMs) of 

the Center for Ocean-Land-Atmosphere Studies (COLA) (Kinter et al. 1988), the Chinese 

Institute of Atmospheric Physics (IAP) (Zeng et al. 1989), and the US National Meteorological 

Center (NMC) Medium-Range Forecast (MRF). In the recently developed NCAR Community 

Land Model (CLM3) and its various earlier versions (Bonan et al. 2002; Oleson et al. 2004), the 

emissivity is set as 0.97 for snow, lakes, and glaciers, 0.96 for soil and wetlands, and vegetation 

is assumed to be black body. For a broadband emissivity to correctly reproduce surface energy 

balance statistics, it needs to be weighted both over the spectral surface blackbody radiation and 

over the downward spectral sky radiances and used either as a single value or a separate value 

for each of these terms. This weighting depends on the local surface temperatures and 

atmospheric composition and temperature. Most simply, as the window region dominates the 

determination of the appropriate single broadband emissivity, an average of emissivities over the 

window region may suffice. 

Climate models use emissivity to determine the net radiative heating of the canopy and 

underlying soil and the upward (emitted and reflected) thermal radiation delivered to the 

atmosphere. The oversimplified representations of emissivity currently used in most models 

introduce significant errors in the simulations of climate. Unlike what has been included in 
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climate models up to now, satellite observations indicate large spatial and temporal variations in 

land surface emissivity with surface type, vegetation amount, and soil moisture, especially over 

deserts and semi-deserts (Ogawa 2004; Ogawa et al. 2003). This variability of emissivity can be 

constructed by the appropriate combination of soil and vegetation components. 

Sensitivity tests indicate that models can have an error of 5–20 Wm
-2

 in their surface 

energy budget for arid and semi-arid regions due to their inadequate treatment of emissivity (Jin 

and Liang 2006; Zhou et al. 2003b), a much larger term than the surface radiative forcing from 

greenhouse gases. The provision, through this proposal, of information on emissivity with global 

spatial sampling will be used for optimal estimation of climate model parameters. A climate 

model, in principle, constructs emissivity at each model grid square from four pieces of 

information: a) the emissivity of the underlying soil; b) the emissivity of the surfaces of 

vegetation (leaves and stems); c) the fraction of the surface that is covered by vegetation; and d) 

the description of the areas and spatial distribution of the surfaces of vegetation needed to 

determine what fraction of surface emission will penetrate the canopy. Previously, we have not 

been able to realistically address these factors because of lack of suitable data. The emissivity 

datasets developed for this project will be analyzed with optimal estimation theory that uses the 

spatial and temporal variations of the emissivity data over soil and vegetation to constrain more 

realistic emissivity schemes for climate models. In doing so, land surface emissivity will be 

linked to other climate model parameters such as fractional vegetation cover, leaf area index, 

snow cover, soil moisture, and soil albedo, as explored in Zhou et al. (2003a). The use of more 

realistic emissivity values will greatly improve climate simulations over sparsely vegetated 

regions as previously demonstrated by various sensitivity tests (e.g., Jin and Liang 2006; Zhou et 

al. 2003b). In particular, both daily mean and day-to-night temperature ranges are substantially 

impacted by the model’s treatment of emissivity. 

3.2 Use of LST&E in Cryospheric Research 

Surface temperature is a sensitive energy-balance parameter that controls melt and energy 

exchange between the surface and the atmosphere. Surface temperature is also used to monitor 

melt zones on glaciers and can be related to the glacier facies of  (Benson 1996), and thus to 

glacier or ice sheet mass balance (Hall et al. 2006). Analysis of the surface temperature of the 

Greenland Ice Sheet and the ice caps on Greenland provides a method to study trends in surface 

temperature as a surrogate for, and enhancement of, air-temperature records, over a period of 
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decades (Comiso 2006). Maps of LST of the Greenland Ice Sheet have been developed using the 

MODIS 1-km LST standard product, and trends in mean LST have been measured (Hall et al. 

2008). Much attention has been paid recently to the warming of the Arctic in the context of 

global warming. Comiso (2006) shows that the Arctic region, as a whole, has been warming at a 

rate of 0.72 ±0.10C per decade from 1981–2005 inside the Arctic Circle, though the warming 

pattern is not uniform. Furthermore, various researchers have shown a steady decline in the 

extent of the Northern Hemisphere sea ice, both the total extent and the extent of the perennial or 

multiyear ice (Parkinson et al. 1999). Increased melt of the margins of the Greenland Ice Sheet 

has also been reported (Abdalati and Steffen 2001). 

Climate models predict enhanced Arctic warming but they differ in their calculations of 

the magnitude of that warming. The only way to get a comprehensive measurement of surface-

temperature conditions over the Polar Regions is through satellite remote sensing. Yet errors in 

the most surface temperature algorithms have not been well-established.  Limitations include the 

assumed emissivity, effect of cloud cover, and calibration consistency of the longer-term satellite 

record.  

Comparisons of LST products over snow and ice features reveal LST differences in 

homogeneous areas of the Greenland Ice Sheet of >2C under some circumstances. Because 

there are many areas that are within a few degrees of 0C, such as the ice-sheet margin in 

southern Greenland, it is of critical importance to be able to measure surface temperature from 

satellites accurately. Ice for which the mean annual temperature is near the freezing point is 

highly vulnerable to rapid melt.  

3.3 Use of LST&E in Atmospheric Retrieval Schemes  

The atmospheric constituent retrieval community and numerical weather prediction 

operational centers are expected to benefit from the development of a unified land surface 

emissivity product. The retrieval of vertical profiles of air temperature and water vapor mixing 

ratio in the atmospheric boundary layer over land is sensitive to the assumptions used about the 

infrared emission and reflection from the surface. Even the retrieval of clouds and aerosols over 

land using infrared channels is complicated by uncertainties in the spectral dependence of the 

land surface emission. Moreover, weather models improve their estimates of atmospheric 

temperature and composition by comparisons between observed and model calculated spectral 

radiances, using an appropriate data assimilation (1D-Var) framework. The model generates 
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forward calculation of radiances by use of their current best estimate of temperature profiles, 

atmospheric composition, and surface temperature and emissivity. If good prior estimates of 

infrared emissivity can be provided along with their error characterization, what would otherwise 

be a major source of error and bias in the use of the satellite radiances in data assimilation can be 

minimized.  

4 Atmospheric Correction 

4.1 Thermal Infrared Radiance 

The at-sensor measured radiance in the TIR spectral region (7–14 µm) is a combination 

of three primary terms: the Earth-emitted radiance, reflected downwelling sky irradiance, and 

atmospheric path radiance. The Earth-emitted radiance is a function of temperature and 

emissivity and gets attenuated by the atmosphere on its path to the satellite. The atmosphere also 

emits radiation, some of which reaches the sensor directly as “path radiance,” while some gets 

radiated to the surface (irradiance) and reflected back to the sensor, commonly known as the 

reflected downwelling sky irradiance. Reflected solar radiation in the TIR region is negligible 

(Figure 1) and a much smaller component than the surface-emitted radiance. One effect of the 

sky irradiance is the reduction of the spectral contrast of the emitted radiance, due to Kirchhoff’s 

law. Assuming the spectral variation in emissivity is small (Lambertian assumption), and using 

Kirchhoff’s law to express the hemispherical-directional reflectance as directional emissivity 

(          the clear-sky at-sensor radiance can be written as three terms: the Earth-emitted 

radiance described by Planck’s function and reduced by the emissivity factor,   ; the reflected 

downwelling irradiance; and the path radiance.  

                          
          

     (1)  
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Figure 1. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere 

(blue) in the 3–12 µm region. Also shown is the solar irradiance contribution W/m2/µm2.  

Where: 

      = at-sensor radiance; 

   = wavelength;  

  = observation angle;  

   = surface emissivity;  

   = surface temperature;  

  
  = downwelling sky irradiance;  

      = atmospheric transmittance;  

  
     = atmospheric path radiance 

       = Planck function, described by Planck’s law: 
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Figure 2 shows the relative contributions from the surface-emission term, surface 

radiance, and at-sensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and 

surface temperature set to 300 K. Vertical bars show the center placement of the three MODIS 

TIR bands 29 (8.55 µm), 31 (11 µm), and 32 (12 µm). The reflected downwelling term adds a 

small contribution in the window regions but will become more significant for more humid 

atmospheres. The at-sensor radiance shows large departures from the surface radiance in regions 

where atmospheric absorption from gases such as CO2, H2O, and O3 are high. 

 

Figure 2. Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and 

at-sensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz 

emissivity spectrum, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show 

placements of the MODIS TIR bands 29 (8.55 µm), 31 (11 µm), and 32 (12 µm). 

Equation (1) gives the at-sensor radiance for a single wavelength,  , while the 

measurement from a sensor is typically measured over a range of wavelengths, or band. The at-

sensor radiance for a discrete band,  , is obtained by weighting and normalizing the at-sensor 
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spectral radiance calculated by equation (1) with the sensor’s spectral response function for each 

band,    , as follows: 

      
                 

         
 (3)   

Using equations (1) and (2), the surface radiance for band   can be written as a 

combination of two terms: Earth-emitted radiance, and reflected downward irradiance from the 

sky and surroundings: 

 
                      

  
        

    

     
 

(4)  

The atmospheric parameters,   
 ,      ,   

    , are estimated with a radiative transfer 

model such as MODTRAN (Kneizys et al. 1996b) discussed in the next section, using input 

atmospheric fields of air temperature, relative humidity, and geopotential height. Figure 3 shows 

MODIS spectral response functions for bands 29 (red), 31 (green) and 32 (blue) plotted with a 

typical transmittance curve for a mid-latitude summer atmosphere.   

 

Figure 3. MODIS spectral response functions for bands 29 (red), 31 (green), and 32 (blue) plotted with a 

typical transmittance curve for a mid-latitude summer atmosphere. 
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4.2 Emissivity 

The emissivity of an isothermal, homogeneous emitter is defined as the ratio of the actual 

emitted radiance to the radiance emitted from a black body at the same thermodynamic 

temperature (Norman and Becker 1995),   =   /  . The emissivity is an intrinsic property of the 

Earth’s surface and is an independent measurement of the surface temperature, which varies with 

irradiance and local atmospheric conditions. The emissivity of most natural Earth surfaces for the 

TIR wavelength ranges between 8 and 12 μm and, for a sensor with spatial scales <100 m, varies 

from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and 

semi-arid areas due to the strong quartz absorption feature (reststrahlen band) between the 8- and 

9.5-μm range, whereas the emissivity of vegetation, water, and ice cover are generally greater 

than 0.95 and spectrally flat in the 8–12-μm range. 

4.3 Radiative Transfer Model 

The current choice of radiative transfer model for atmospherically correcting MODIS 

TIR data is the latest version of the Moderate Resolution Atmospheric Radiance and 

Transmittance Model (MODTRAN) (Berk et al. 2005). MODTRAN has been sufficiently tested 

and validated and meets the speed requirements necessary for high spatial resolution data 

processing. The most recent MODTRAN 5.2 uses an improved molecular band model, termed 

the Spectrally Enhanced Resolution MODTRAN (SERTRAN), which has a much finer 

spectroscopy (0.1 cm
-1

) than its predecessors (1–2 cm
-1

), resulting in more accurate modeling of 

band absorption features in the longwave TIR window regions (Berk et al. 2005). Furthermore, 

validation with Line-by-Line models (LBL) has shown good accuracy. 

Older versions of MODTRAN, such as version 3.5 and 4.0, have been used extensively in 

the past few decades for processing multi-band and broadband TIR and short-wave/visible 

imaging sensors such as ASTER data on NASA’s Terra satellite. Earlier predecessors, such as 

MODTRAN 3.5, used a molecular band model with 2 cm
-1

 resolution and traced their heritage 

back to previous versions of LOWTRAN (Berk 1989; Kneizys et al. 1996a). With the next 

generation’s state-of-the-art, mid- and longwave IR hyperspectral sensors due for launch in the 

next decade, there has been greater demand for higher resolution and quality radiative transfer 

modeling. MODTRAN 5.2 has been developed to meet this demand by reformulating the 

MODTRAN molecular band model line center and tail absorption algorithms. Further 
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improvements include the auxiliary species option, which simulates the effects of HITRAN-

specific trace molecular gases, and a new multiple scattering option, which improves the 

accuracy of radiances in transparent window regions. 

Wan and Li (2008) have compared MODTRAN 4 simulations with clear-sky radiances 

from a well-calibrated, advanced Bomem TIR interferometer (MR100) and found accuracies to 

within 0.1 K for brightness temperature-equivalent radiance values. 

4.4 Atmospheric Profiles 

The general methodology for atmospherically correcting the MODIS TIR data will be 

based largely on the methods that were developed for the ASTER instrument (Palluconi et al. 

1999). However, significant improvements will be made by taking advantage of newly 

developed techniques and more advanced algorithms to improve accuracy. Currently two options 

for atmospheric profile sources are available: 1) interpolation of data assimilated from Numerical 

Weather Prediction (NWP) models, and 2) retrieved atmospheric geophysical profiles from 

remote-sensing data. The NWP models use current weather conditions, observed from various 

sources (e.g., radiosondes, surface observations, and weather satellites) as input to dynamic 

mathematical models of the atmosphere to predict the weather. Data are typically output in 6-

hour increments, e.g., 00, 06, 12, and 18 UTC. Examples include: the Global Data Assimilation 

System (GDAS) product provided by the National Centers for Environmental Prediction (NCEP) 

(Kalnay et al. 1990); the Modern Era Retrospective-analysis for Research and Applications 

(MERRA) product provided by the Goddard Earth Observing System Data Assimilation System 

Version 5.2.0 (GEOS-5.2.0) (Bosilovich et al. 2008); and the European Center for Medium-

Range Weather Forecasting (ECMWF), which is supported by more than 32 European states. 

Remote-sensing data, on the other hand, are available real-time, typically twice daily and for 

clear-sky conditions. The principles of inverse theory are used to estimate a geophysical state 

(e.g., atmospheric temperature) by measuring the spectral emission and absorption of some 

known chemical species such as carbon dioxide in the thermal infrared region of the 

electromagnetic spectrum (i.e., the observation). Examples of current remote-sensing data 

include the Atmospheric Infrared Sounder (AIRS) (Susskind et al. 2003) and Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Justice and Townshend 2002), both on 

NASA’s Aqua satellite launched in 2002.  
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The standard ASTER atmospheric correction technique, which is operated at the Land 

Processes Distributed Active Archive Center (LP DAAC) at the EROS Center in Sioux Falls, 

SD, uses input atmospheric profiles from the NCEP GDAS product at 1° spatial resolution and 

6-hour intervals. An interpolation scheme in both space and time is required to characterize the 

atmospheric conditions for an ASTER image on a pixel-by-pixel basis. This method could 

potentially introduce large errors in estimates of air temperature and water vapor, especially in 

humid regions where atmospheric water vapor can vary on smaller spatial scales than 1°. The 

propagation of these atmospheric correction errors would result in band-dependent surface 

radiance errors in both spectral shape and magnitude, which in turn would result in errors of 

retrieved Level-2 products such as surface emissivity and temperature.  

The plan for atmospherically correcting MODIS data for the MODTES algorithm will be to 

use coincident profiles from the joint MODIS MOD07/MYD07 atmospheric product (Seemann 

et al. 2003). The MOD07 product consists of profiles of temperature and moisture produced at 

20 standard levels and total precipitable water vapor (TPW), total ozone, and skin temperature, 

produced at 5 5 MODIS 1-km pixels. The latest MOD07 algorithm update (v5.2) includes a 

new and improved surface emissivity training data set, with the result that RMSE differences in 

TPW between MOD07 and a microwave radiometer (MWR) at the Atmospheric Radiation 

Measurement (ARM) Southern Great Plains (SGP) site in Oklahoma were reduced from 2.9 mm 

to 2.5 mm (Seemann et al. 2008). Other validation campaigns have included comparisons with 

ECMWF and AIRS data, radiosonde observations (RAOBS), and MWR data at ARM SGP. 

Figure 4 shows biases and RMS differences between Aqua MODIS MOD07 and the “best 

estimate of the atmosphere” at the SGP ARMS site for air temperature (two left panels) and 

water vapor mixing ratio (right two panels). Results show that MOD07 has a ~4 K RMSE at the 

surface decreasing linearly to 2 K at 700 mb and then remaining at the 2–3 K until top of 

atmosphere. For water vapor, the RMSE near the surface is ~2.5 g/kg and decreasing to 

<0.5 g/kg above 600 mb.  
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Figure 4. Bias and RMS differences between Aqua MODIS MOD07, AIRS v4 operational temperature and 

moisture profiles and the “best estimate of the atmosphere” (Tobin et al. 2006) dataset for 80 clear sky cases 

over the SGP ARM site. From Seemann et al. (2006). 

4.5 Radiative Transfer Sensitivity Analysis 

The accuracy of the proposed atmospheric correction technique relies on the accuracy of 

the input variables to the model, such as air temperature, relative humidity, and ozone. The 

combined uncertainties of these input variables need to be known if an estimate of the radiative 

transfer accuracy is to be estimated. These errors can be band-dependent, since different 

channels have different absorbing features and they are also dependent on absolute accuracy of 

the input profile data at different levels. The final uncertainty introduced is the accuracy of the 

radiative transfer model itself; however, this is expected to be small.  

To perform the analysis, four primary input geophysical parameters were input to 

MODTRAN 5.2, and each parameter was changed sequentially in order to estimate the 

corresponding percent change in radiance (Palluconi et al. 1999). These geophysical parameters 

were air temperature, relative humidity, ozone, and aerosol visibility. Two different atmospheres 

were chosen, a standard tropical atmosphere and a mid-latitude summer atmosphere. These two 

simulated atmospheres should capture the realistic errors that we expect to see in humid 

conditions. 

Typical values for current infrared sounder accuracies (e.g., AIRS) of air temperature and 

relative humidity retrievals in the boundary layer were used for the perturbations: 1) air 

temperature of 2 K, 2) relative humidity of 20%, 3) ozone was doubled, and 4) aerosol visibility 

was changed from rural to urban class. Numerical weather models such as NCEP would most 
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likely have larger uncertainties in the 1–2 K range for air temperature and 10–20% for relative 

humidity (Kalnay et al. 1990).  

Table 1 shows the results for three simulated MODIS bands 29, 31, and 32 expressed as 

percent change in radiance (equivalent brightness temperature change in parentheses) for two 

standard atmospheric regimes, tropical and mid-latitude summer. The results show that band 29 

is in fact most sensitive to perturbations in air temperature, followed by band 31 and 32 for both 

atmospheric profiles, with the mid-latitude profile having larger changes than tropical. For a 20% 

change in humidity the reverse is true, band 32 having the largest change of nearly 3 K for a 

tropical atmosphere, followed by band 31 and 29. This is because band 32 falls closest to strong 

water lines above 12 µm, as shown in Figure 2. Doubling the ozone results in a much larger 

sensitivity for band 5, since it is closest to the strong ozone absorption feature centered around 

the 9.5-µm region as shown in Figure 2. Changing the aerosol visibility from rural to urban had a 

small effect on each band but was largest for band 5. Generally, the radiance in the thermal 

infrared region is insensitive to aerosols in the troposphere so, for the most part, a climatology-

based estimate of aerosols would be sufficient. However, when stratospheric aerosol amounts 

increase substantially due to volcanic eruptions, for example, then aerosol amounts from future 

NASA remote-sensing missions such as ACE and GEO-CAPE would need to be taken into 

account.  

Table 1. Percent changes in simulated at-sensor radiances for changes in input geophysical parameters for 

MODIS bands 29, 31, and 32, with equivalent change in brightness temperature in parentheses.  

Geophysical 

Parameter 

Change in 

Parameter 

% Change in Radiance 

(Tropical Atmosphere) 

% Change in Radiance 

(Mid-lat Summer Atmosphere) 

  Band 29 

(8.5 µm) 

Band 31 

(11 µm) 

Band 32 

(12 µm) 

Band 29 

(8.5 µm) 

Band 31 

(11 µm) 

Band 32 

(12 µm) 

Air 

Temperature 

+2 K 2.8 

(1.44 K) 

1.97 

(1.31 K) 

1.62 

(1.15 K) 

3.27 

(1.64 K) 

2.50 

(1.61 K) 

2.13 

(1.49 K) 

Relative 

Humidity 

+20% 3.51 

(1.76 K) 

3.91 

(2.54 K) 

4.43 

(3.09 K) 

2.76 

(1.35 K) 

3.03 

(1.93 K) 

3.61 

(2.48 K) 

Ozone    0.69 

(0.35 K) 

0.00 

(0 K) 

0.02 

(0.01 K) 

0.69 

(0.34 K) 

0.00 

(0 K) 

0.02 

(0.02 K) 

Aerosol Urban/Rural 0.42 

(0.21 K) 

0.27 

(0.17 K) 

0.22 

(0.16 K) 

0.43 

(0.21 K) 

0.29 

(0.19 K) 

0.25 

(0.17 K) 

        

It should also be noted, as discussed in Palluconi et al. (1999), that in reality these types 

of errors may have different signs, change with altitude, and/or have cross-cancelation between 
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the parameters. As a result, it is difficult to quantify the exact error budget for the radiative 

transfer calculation; however, what we do know is that the challenging cases will involve warm 

and humid atmospheres where distributions of atmospheric water vapor are the most uncertain.  

5 Water Vapor Scaling Method 

The accuracy of the TES algorithm is limited by uncertainties in the atmospheric 

correction, which result in a larger apparent emissivity contrast. This intrinsic weakness of the 

TES algorithm has been systemically analyzed by several authors (Coll et al. 2007; Gillespie et 

al. 1998; Gustafson et al. 2006; Hulley and Hook 2009b; Li et al. 1999), and its effect is greatest 

over graybody surfaces that have a true spectral contrast that approaches zero. In order to 

minimize atmospheric correction errors, a Water Vapor Scaling (WVS) method has been 

introduced to improve the accuracy of the water vapor atmospheric profiles on a band-by-band 

basis for each observation using an Extended Multi-Channel/Water Vapor Dependent 

(EMC/WVD) algorithm (Tonooka 2005), which is an extension of the Water Vapor Dependent 

(WVD) algorithm (Francois and Ottle 1996). The EMC/WVD equation models the at-surface 

brightness temperature, given the at-sensor brightness temperature, along with an estimate of the 

total water vapor amount:  

 
                 

 

   

 

                     
 , 

(5)  

where:  

  Band number 

  Number of bands 

  Estimate of total precipitable water vapor (cm) 

      Regression coefficients for each band 

   Brightness temperature for band k (K) 

     Brightness surface temperature for band,   

The coefficients of the EMC/WVD equation are determined using a global-based 

simulation model with atmospheric data from the NCEP Climate Data Assimilation System 

(CDAS) reanalysis project (Tonooka 2005).  
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The scaling factor,  , used for improving a water profile, is based on the assumption that 

the transmissivity,   , can be express by the Pierluissi double exponential band model 

formulation. The scaling factor is computed for each gray pixel on a scene using      computed 

from equation (4) and    computed using two different   values that are selected a priori:  

 

    

   
        

  
  

          
  
  
           

                    

     
                    

 

  
     

  

 

                     
 

(6)  

where:  

   Band model parameter 

      Two appropriately chosen   values 

           Transmittance calculated with water vapor profile scaled by   

  
          Path radiance calculated with water vapor profile scaled by   

Typical values for   are      and       . Tonooka (2005) found that the   calculated 

by equation (6) will not only reduce biases in the water vapor profile, but will also 

simultaneously reduce errors in the air temperature profiles and/or elevation. An example of the 

water vapor scaling factor,  , is shown in Figure 6 for a MODIS observation on 29 August 2004. 

5.1 Gray Pixel Computation 

It is important to note that   is only computed for graybody pixels (e.g., vegetation, 

water, and some soils) with emissivities close to 1.0 and, as a result, an accurate gray-pixel 

estimation method is required prior to processing. Vegetation indices such as the Normalized 

Difference Vegetation Index (NDVI), land cover databases (e.g., MODIS MOD12), and thermal 

log residuals (TLR) (Hook et al. 1992), are three different approaches that can be used in 

combination to identify graybody pixels. In the MOD21 product all pixels with 

photosynthetically active vegetation are first identified using the standard MODIS MOD13A2 

(16-day) vegetation index product with an NDVI threshold (NDVI > 0.3). Water, ocean, and 

snow/ice pixels are then classified using a land-water and snow-cover map generated from the 

standard MODIS MOD10A2 product (8-day).  

Using these gray pixels as a first-guess estimate, a TLR approach can be used to further 

refine the gray-pixel map, but at present the uncertainties introduced by this approach are still too 

high to use operationally. The TLR approach spectrally enhances images generated from multi-
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spectral data and removes dependence on band-independent parameters such as surface 

temperature. All gray pixels within a TLR image will have similar spectral features, and a 

correlation coefficient approach is used to further refine the gray-pixel map based on the first-

guess gray pixels. For example, TLR pixels that have a correlation coefficient higher than 0.9 

with the mean TLRs of the first guess gray pixels are further classified as graybodies. Figure 5 

shows an example of the various stages of classifying graybodies for a MODIS scene cutout over 

parts of Arizona and southeastern California (black = graybody, white = bare) on 29 August 

2004. Using the NDVI and water mask all first-guess gray pixels are first classified (top right) 

and then further refined with TLRs (bottom left) to produce the final graybody-pixel map. 



MODIS MOD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

29 

  

  

Figure 5. Clockwise from top left: Google Earth visible image; first guess gray-pixel map; TLR refinement; 

and final gray pixel map for a MODIS scene cutout over parts of Arizona and southeastern California 

(black = graybody, white = bare) on 29 August 2004. See text for details.  

5.2 Interpolation and Smoothing  

Once   is computed for all gray pixels, the values are horizontally interpolated to 

adjacent bare pixels on the scene and smoothed before computing the improved atmospheric 

parameters. An inverse distance-weighted interpolation method is typically used to fill in bare 
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pixel gaps. This is an interpolation method frequently used in numerical weather forecasting with 

much success. The specific steps for interpolation of   values are as follows: 

1. First all bare pixels are set to 1; in addition, all   values less than 0.2 and greater than 3 are 

set to 1 for stability purposes and to eliminate possible cloud contamination.  

2. Next, all cloudy pixels on the scene are set to not a number (NaN). 

3. All bare pixels are then looped over, and optimum weights are found for all gray pixels 

within a given effective radius of the bare pixel. The   value for the pixel is then computed 

using the weighted   values surrounding the pixel and ignoring all NaN values as follows: 

 
            

 

   

 (7)  

where   is the number of gray pixels, and    are the weight functions assigned to each gray 

pixel   value: 

 
   

  
  

   
   

   

 (8)  

where   is weighting factor, called the power parameter, typically set to 4. Higher values 

give larger weights to the closest pixels.    is the geometrical distance from the interpolation 

pixel to the scattered points of interest within some effective radius (~50 km for MOD21 was 

ideal): 

                     (9)  

where   and   are the coordinates of the interpolation point, and    and    are coordinates of 

the scattered points.  

If any bare pixels remain after the first pass, the bare pixels with a valid, calculated,   

value are considered gray pixels, and the process is repeated until   values for all bare pixels 

have been computed.  

This interpolation method should not introduce large error, since gray pixels are usually 

widely available in any given MODIS scene and atmospheric profiles do not change significantly 

at the medium-range scale (~50 km). Figure 6 shows an example of a   image for band 29 after 

interpolation and smoothing for the MODIS cutout shown in Figure 5. 
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Figure 6. MODIS MOD07 total column water vapor (left) and WVS factor,  , (right) computed using equation 

(5) for a MODIS scene cutout on 29 August 2004. The image has been interpolated and smoothed using the 

techniques discussed in section 5.2. 

5.3 Scaling Atmospheric Parameters 

5.3.1 Transmittance and Path Radiance 

Once the MODTRAN run has completed and the   image has been interpolated and 

smoothed, the atmospheric parameters transmittance    and path radiance   
  are modified as 

follows: 

 
                

      
  

  
     

           
  
      

  
     

   
(10)  

 
  
         

        
         

          
 

(11)  

Once the transmittance and path radiance have been adjusted using the scaling factor, the surface 

radiance can be computed using equation (1). 

5.3.2 Downward Sky Irradiance 

In the WVS simulation model, the downward sky irradiance can be modeled using the 

path radiance, transmittance, and view angle as parameters. To simulate the downward sky 

irradiance in a MODTRAN run, the sensor target is placed a few meters above the surface, with 

surface emission set to zero and view angle set at prescribed values, e.g., Gaussian angles 

(  = 0°, 11.6°, 26.1°, 40.3°, 53.7°, and 65°). In this way, the only radiance contribution is from 
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the reflected downwelling sky irradiance at a given view angle. The total sky irradiance 

contribution is then calculated by summing up the contribution of all view angles over the entire 

hemisphere: 

 

  
      

                    

   

 

  

 

 
(12)  

where   is the view angle and   is the azimuth angle. However, to minimize computational time 

in the MODTRAN runs, the downward sky irradiance can be modeled as a non-linear function of 

path radiance at nadir view: 

   
             

           
        (13)  

where   ,   , and    are regression coefficients (Table 2), and   
       is computed by: 

 
  
         

       
         

    

         
 

(14)  

Tonooka (2005) found RMSEs of less than 0.07 W/m
2
/sr/µm for ASTER bands 10–14 when 

using equation (13) as opposed to equation (12). Figure 7 shows an example of comparisons 

between MODIS band 29 (8.55 µm) atmospheric transmittance (top), path radiance (middle), and 

computed surface radiance (bottom), before and after applying the WVS scaling factor,  , for the 

MODIS cutout shown in Figure 5. A decrease in transmittance and corresponding increase in 

path radiance values, after scaling over an area in the south of the image, show that the original 

atmospheric water absorption was underestimated using input MODIS MOD07 atmospheric 

profiles. The result is an increase in surface radiance over the bare regions of the Mojave Desert 

in the south of the image due to an increase in reflected downward sky irradiance.  

Table 2. MODIS-Terra regression coefficients for equation 13. 

Band a b c 
29 -0.0011 1.7807 -0.0333 

31 -0.0019 1.7106 -0.0545 

32 0.0012 1.7005 -0.0595 

 

5.4 Calculating the EMC/WVD Coefficients 

The EMC/WVD coefficients,      , from equation (5) are determined using a global 

simulation model with input atmospheric parameters from either numerical weather model or 

radiosonde data. Radiosonde databases such as the TIGR, SeeBor, and CLAR contain uniformly 
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distributed global atmospheric soundings acquired both day and night in order to capture the full-

scale natural atmospheric variability.  

 

Figure 7. Comparisons between the atmospheric transmittance (top), path radiance (W/m2/µm1) (middle), 

and computed surface radiance (W/m2/µm1) (bottom), before and after applying the WVS scaling factor   to 

a MODIS scene cutout shown in Figure 5. Results are shown for MODIS band 29 (8.55 µm). 
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Geophysical profiles of air temperature, relative humidity, and geopotential height are 

used in combination with surface temperature and emissivity to simulate at-sensor brightness 

temperatures for the global set of profiles distributed uniformly over land. The air temperature 

profiles are then shifted by 2, 0, and +2 K, while the humidity profiles are scaled by factors of 

0.8, 1.0, and 1.2. These types of perturbations will help simulate a full range of atmospheric 

conditions. Furthermore, the surface temperatures are modified by 5, 0, 5, and 10 K, and a set 

of 10 surface emissivity spectra are provided. These spectra are typically from gray materials, 

such as water, vegetation, snow, ice, and some types of soils, and tend to have values greater 

than 0.95. This ensures that the simulation results are not affected by uncertainties in surface 

emissivity, such as Lambertian effects. The at-sensor radiance is then computed using 

MODTRAN for the full set of profiles and perturbations (             . The surface 

elevation is taken from a global DEM (e.g., ASTER GDEM), and the view angle is assumed to 

be nadir. Furthermore, a noise-equivalent differential temperature (    ) of 0.05 K appropriate 

for MODIS thermal bands was applied using a normalized random number generator. Using the 

simulated at-sensor   , at-surface    brightness temperatures, and an estimate of the total 

precipitable water vapor, the coefficients in equation (5) were be found by using a linear least-

squares method. The coefficients are shown in Table 3 for MODIS bands 29, 31, and 32 

including the RMSE (K). Table 4 shows the band model parameter coefficients used in equation 

(6) to calculate the water vapor scaling factor. 

Table 3. MODIS-Terra EMC/WVD coefficients used in equation (5).  

Band pi,0 qi,0 ri,0 pi,1 qi,1 ri,1 pi,2 qi,2 ri,2 pi,3 qi,3 ri,3 
RMSE 

(K) 

29 (i=1) -4.8338 20.0122 -0.005 -0.3757 -0.0768 0.0976 4.1226 1.1369 -0.1924 -2.7277 -1.1308 0.0952 1.395 

31 (i=2) -3.6547 22.8787 -5.2738 -0.4274 -0.0491 0.1121 4.3162 1.0203 -0.2708 -2.8747 -1.0526 0.1778 0.682 

32 (i=3) -3.7915 22.0713 -5.519 -0.4239 -0.0519 0.1174 4.2272 1.0663 -0.2914 -2.7881 -1.0932 0.1941 0.403 

 

Table 4. MODIS-Terra  band model parameters in equation (6). 

Band Parameter 

29 1.4293 

31 1.8203 

32 1.8344 
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6 Temperature and Emissivity Separation Approaches 

The radiance in the TIR atmospheric window (8–13 µm) is dependent on the temperature 

and emissivity of the surface being observed according to Planck’s law. Even if the atmospheric 

properties (water vapor and air temperature) are well known and can be removed from equation 

(1), the problem of retrieving surface temperature and emissivity from multispectral 

measurements is still a non-deterministic process. This is because the total number of 

measurements available (N bands) is always less than the number of variables to be solved for 

(emissivity in N bands and one surface temperature). Therefore, no retrieval will ever do a 

perfect job of separation, with the consequence that errors in temperature and emissivity may co-

vary. If the surface can be approximated as Lambertian (isotropic) and the emissivity is assigned 

a priori from a land-cover classification, then the problem becomes deterministic with only the 

surface temperature being the unknown variable. Examples of such cases would be over ocean, 

ice, or densely vegetated scenes where the emissivity is known a priori and spectrally flat in all 

bands. Another deterministic approach is the single-band inversion approach. If the atmospheric 

parameters are known in equation (1), then the temperature can also be solved for using a single 

band assuming the emissivity is known, usually in the clearest region of the window (~11 µm). 

Deterministic approaches are usually employed with sensors that have one or two bands in the 

TIR region using an SW approach, while non-deterministic approaches are applied to 

multispectral sensors with three or more bands in the TIR so that spectral variations in the 

retrieved emissivity can be related to surface composition and cover, in addition to retrieving the 

surface temperature. For the MODIS MOD21 product, a non-deterministic approach will be used 

in order to retrieve spectral emissivity in bands 29, 31, and 32, in addition to the surface 

temperature. 

6.1 Deterministic Approaches 

6.1.1 SW Algorithms 

The most common deterministic approach can be employed without having to explicitly 

solve the radiative transfer equation. Two or more bands are employed in the window region 

(typically 10.5–12 µm), and atmospheric effects are compensated for by the differential 

absorption characteristics from the two bands. This approach is used with much success over 

oceans to compute the SST (Brown and Minnett 1999), as the emissivity of water is well known 
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(Masuda et al. 1988). Variations of this method over land include the SW approach (Coll and 

Caselles 1997; Prata 1994; Price 1984; Wan and Dozier 1996; Yu et al. 2008), the multichannel 

algorithm (Deschamps and Phulpin 1980), and the dual-angle algorithm (Barton et al. 1989). 

Over land, the assumption is that emissivities in the SW bands being used are stable and well 

known and can be assigned using a land-cover classification map (Snyder et al. 1998). However, 

this assumption introduces large errors over barren surfaces where much larger variations in 

emissivity are found due to the presence of large amounts of exposed rock or soil, often with 

abundant silicates (Hulley and Hook 2009a). Land cover classification maps typically use 

Visible Near-Infrared (VNIR) data for assignment of various classes. This method may work for 

most vegetation types and over water surfaces but, because VNIR reflectances correspond 

predominately to Fe oxides and OH

 and not to the Si-O bond over barren areas, there is little or 

no correlation with silicate mineralogy features in thermal infrared data. This is why, in most 

classification maps, only one bare land class is specified (barren).  

The primary LST product for MODIS (MOD11) currently uses a generalized SW 

approach (Wan and Dozier 1996), where coefficients are stratified according to view angle, total 

column water (TCW), and surface air temperature. Emissivities are assigned a priori based on 

land cover classification maps. The MOD21 LST&E product will not be based on an SW 

algorithm as in MOD11, but will use a non-deterministic multi-spectral approach for the 

following reasons:  

1. An SW method based on classification is not able to retrieve spectral emissivities of geologic 

surfaces for compositional analysis.  

2. The emissivity of the land surface is in general heterogeneous and is dependent on many 

factors including surface soil moisture, vegetation cover changes, and surface compositional 

changes, which are not characterized by land classification maps.  

3. SW algorithms are inherently very sensitive to measurement noise between bands. 

4. Classification leads to sharp discontinuities and contours in the data between different class 

types, while a physical-based multispectral retrieval will produce seamless emissivity 

images.  

5. Temperature inaccuracies are difficult to quantify over geologic surfaces where constant 

emissivities are assigned. 
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6.1.2 Single-Band Inversion 

If the atmosphere is known, along with an estimate of the emissivity, then equation (1) 

can be inverted to retrieve the surface temperature using one band. Theoretically, any band used 

should retrieve the same temperature, but uncertainties in the atmospheric correction will result 

in subtle differences as different bands have stronger atmospheric absorption features than others 

that may be imperfectly corrected for atmospheric absorption. For example, a band near 8 µm 

will have larger dependence on water vapor, while the 9–10-µm region will be more susceptible 

to ozone absorption. Jimenez-Munoz and Sobrino (2010) applied this method to ASTER data by 

using atmospheric functions (AFs) to account for atmospheric effects. The AFs can be computed 

by the radiative transfer equation or empirically given the total water vapor content. The clearest 

ASTER band (13 or 14) was used to retrieve the temperature, with the emissivity determined 

using an NDVI fractional vegetation cover approach. A similar procedure has been proposed to 

retrieve temperatures from the Landsat TIR band 6 on ETM+ and TM sensors (Li et al. 2004). 

The single-band inversion method has not been proposed for MODIS data for the following 

reasons: 

1. Inability to retrieve spectral emissivity of geologic surfaces for compositional analysis. This 

will not be possible with the single-band approach, which assigns emissivity based on land 

cover type and vegetation fraction. 

2. Estimating emissivity from an NDVI-derived vegetation cover fraction over arid and semi-

arid regions will introduce errors in the LST because NDVI is responsive only to 

chlorophyll-active vegetation, and does not correlate well with senescent vegetation (e.g., 

shrublands). 

3. Only one-band emissivity is solved for the single-band inversion approach. The MODIS 

MOD21 product will be based on a multispectral retrieval approach. 

6.1.3 Non-deterministic Approaches 

In non-deterministic approaches, the temperature and spectral emissivity are solved using 

an additional constraint or extra degree of freedom that is independent of the data source. These 

types of solutions are also rarely perfect because the additional constraint will always introduce 

an additional level of uncertainty; however, they work well over all surfaces (including arid and 

semi-arid) and can automatically account for land surface changes, such as those due to wildfires 
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or surface soil moisture. First, we introduce two well-known approaches, the day/night and TISI 

algorithms, followed by an examination of the algorithms and methods that led up to 

establishment of the TES algorithm, which will be used in the MOD21 LST&E product. 

6.1.3.1 Day/Night Algorithm 

The constraint in the day/night algorithm capitalizes on the fact that the emissivity is an 

intrinsic property of the surface and should not change from day- to nighttime observations. The 

day/night algorithm is currently used to retrieve temperature/emissivity from MODIS data in the 

MOD11B1 product (Wan and Li 1997). The method relies on two measurements (day and night), 

and the theory is as follows: Two observations in N bands produce 2N observations, with the 

unknown variables being N-band emissivities, a day- and nighttime surface temperature, four 

atmospheric variables (day and night air temperature and water vapor), and an anisotropic factor, 

giving N + 7 variables. In order to make the problem deterministic, the following conditions 

must be met: 2N ≥ N+7, or N ≥ 7. For the MODIS algorithm, this can be satisfied by using bands 

20, 22, 23, 29, and 31–33. Although this method is theoretically sound, the retrieval is 

complicated by the fact that two clear, independent observations are needed (preferably close in 

time) and the pixels from day and night should be perfectly co-registered. Errors may be 

introduced when the emissivity changes from day to night observation (e.g., due to condensation 

or dew), and from undetected nighttime cloud. In addition, the method relies on very precise co-

registration between the day- and nighttime pixel.  

6.1.3.2 Temperature Emissivity Separation Approaches 

During research activities leading up to the ASTER mission, the ASTER TEWG was 

established in order to examine the performance of existing non-deterministic algorithms and 

select one that would be suitable for retrieving the most accurate temperature and/or emissivity 

over the entire range of terrestrial surfaces. This led to the development of the TES algorithm, 

which ended up being a hybrid algorithm that capitalized on the strengths of previous algorithms. 

In Gillespie et al. (1999), ten inversion algorithms were outlined and tested, leading up to 

development of TES. For all ten algorithms, an independent atmospheric correction was 

necessary. The ten algorithms were as follows: 1) Alpha-derived emissivity (ADE) method, 2) 

Classification method, 3) Day-Night measurement, 4) Emissivity bounds method, 5) Graybody 
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emissivity method, 6) Mean Min-Max Difference (MMD) method, 7) Model emissivity method, 

8) Normalized emissivity method (NEM), 9) Ratio Algorithm, and 10) SW algorithm. 

In this document, we will briefly discuss a few of the algorithms but will not expand 

upon any of them in great detail. The Day-Night measurement (3), Classification (2), and SW 

(10) algorithms have already been discussed in section 4.2.1. A detailed description of all ten 

algorithms is available in Gillespie et al. (1999). The various constraints proposed in these 

algorithms can: determine spectral shape but not temperature, use multiple observations (day and 

night), assume a value for emissivity and calculate temperature, assume a spectral shape, or 

assume a relationship between spectral shape and minimum emissivity.  

The NEM removes the downwelling sky irradiance component by assuming an      of 

0.99. Temperature is then estimated by inverting the Planck function and a new emissivity found. 

This process is repeated until successive changes in the estimated surface radiances are small. 

This method in itself was not found to be suitable for ASTER because temperature inaccuracies 

tended to be high (>3 K) and the emissivities had incorrect spectral shapes. Other approaches 

have used a model to estimate emissivity at one wavelength (Lyon 1965) or required that the 

emissivity be the same at two wavelengths (Barducci and Pippi 1996). This introduces problems 

for multispectral data with more than five bands, e.g., ASTER.  

The ADE method (Hook et al. 1992; Kealy et al. 1990; Kealy and Hook 1993) is based 

on the alpha residual method that preserves emissivity spectral shape but not amplitude or 

temperature. The introduced constraint uses an empirical relationship between spectral contrast 

and average emissivity to restore the amplitude of the alpha-residual spectrum and to compute 

temperature. The average emissivity was used in the relationship to minimize band-to-band 

calibration errors. The TEWG used this key feature of the ADE method in TES, although the 

minimum emissivity, rather than the average emissivity, was used in the empirical relationship 

(Matsunaga 1994). The ADE itself was not fully employed for two primary reasons as discussed 

in Gillespie et al. (1999): 1) ADE uses Wien’s approximation, exp(x)  1 = exp(x), which 

introduces a noticeable “tilt” in the residual spectra that gets transferred to the final emissivity 

spectra; and 2) This issue was easily fixed in the hybrid version of TES. 

Lastly, the temperature-independent spectral indices (TISI) approach (Becker and Li 

1990) computes relative emissivities from power-scaled brightness temperatures. TISI, however, 

is band-dependent and only recovers spectral shape; furthermore, the values are non-unique. To 
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retrieve actual emissivities, additional information or assumptions are needed. Other algorithms, 

which only retrieve spectral shape, are the thermal log and alpha residual approach (Hook et al. 

1992) and spectral emissivity ratios (Watson 1992; Watson et al. 1990). Neither of these was 

considered because they do not recover temperature or actual emissivity values. 

6.2 TES Algorithm 

The final TES algorithm proposed by the ASTER TEWG combined some core features 

from previous algorithms and, at the same time, improved on them. TES combines the NEM, the 

ratio, and the MMD algorithm to retrieve temperature and a full emissivity spectrum. The NEM 

algorithm is used to estimate temperature and iteratively remove the sky irradiance, from which 

an emissivity spectrum is calculated, and then ratioed to their mean value in the ratio algorithm. 

At this point, only the shape of the emissivity spectrum is preserved, but not the amplitude. In 

order to compute an accurate temperature, the correct amplitude is then found by relating the 

minimum emissivity to the spectral contrast (MMD). Once the correct emissivities are found, a 

final temperature can be calculated with the maximum emissivity value. Additional 

improvements involve a refinement of      in the NEM module and refining the correction for 

sky irradiance using the     -MMD final emissivity and temperature values. Finally, a quality 

assurance (QA) data image is produced that partly depends on outputs from TES such as 

convergence, final     , atmospheric humidity, and proximity to clouds. More detailed 

discussion of QA is included later in this document. 

Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, 

assuming well-calibrated, accurate radiometric measurements (Gillespie et al. 1998). 

6.2.1 TES Data Inputs 

Inputs to the TES algorithm are the surface radiance,     , given by equation (4) (at-

sensor radiance corrected for transmittance and path radiance), and downwelling sky irradiance 

term,   
  , which is computed from the atmospheric correction algorithm using a radiative transfer 

model such as MODTRAN. Both the surface radiance and sky irradiance will be output as a 

separate product. The surface radiance is primarily used as a diagnostic tool for monitoring 

changes in Earth’s surface composition. Before the surface radiance is estimated using equation 

(4), the accuracy of the atmospheric parameters,   
 ,      ,   

    , is improved upon using a 
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WVS method (Tonooka 2005) on a band-by-band basis for each observation using an extended 

multi-channel/water vapor dependent (EMC/WVD) algorithm. 

6.2.2 TES Limitations 

As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. Currently, the largest 

source of uncertainty for ASTER data is the residual effect of incomplete atmospheric correction. 

Measurement accuracy and precision contribute to a lesser degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

“apparent” MMD, which is overestimated due to residual sensor noise and incomplete 

atmospheric correction. A threshold classifier was introduced by the TEWG to partly solve this 

problem over graybody surfaces. Instead of using the calibration curve to estimate      from 

MMD, a value of     = 0.983 was automatically assigned when the spectral contrast or MMD in 

emissivity was smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this 

caused artificial step discontinuities in emissivity between vegetated and arid areas.  

At the request of users, two parameter changes were made to the ASTER TES algorithm 

on 1 August 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images, which users could not 

tolerate in their analyses. The consequence of removing the threshold classifier was a smoother 

appearance for all images but at the cost of TES underestimating the emissivity of graybody 

scenes, such as water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second 

parameter change removed the iterative correction for reflected downwelling radiation, which 

also frequently failed due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using 

only the first iteration resulted in improved spectral shape and performance of TES.  

Figure 8 shows the distribution of LST uncertainties for the MODIS and ASTER TES 

algorithm with respect to TCW and simulated LST for TES+atm (atmospheric uncertainty) and 

TES+atm+wvs (atmospheric uncertainty with WVS) simulation cases. In general the TES+atm 

uncertainties increase with TCW and simulated LST for both types of surfaces and range from 

4–6 K for TCW values greater than 4 cm and LSTs greater than 300 K. The TES+atm+wvs 

results show that applying the WVS method reduces the LST uncertainty at higher TCW 

contents by more than a factor of two, with uncertainties not exceeding 2 K for either type of 

surface type or sensor. 
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Figure 8. ASTER (left panels) and MODIS (right panels) LST uncertainty distributions plotted versus TCW and 

simulated LST for all end-member surface types (graybody, soils, sands, and rocks), for the TES algorithm 

including atmospheric error (TES+atm) and with the WVS method applied (TES+atm+wvs). 

6.2.3 TES Processing Flow 

Figure 9 shows the processing flow diagram for the generation of the cloud masks, land-

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 10 

shows a more detailed processing flow of the TES algorithm itself. Each of the steps will be 

presented in sufficient detail in the following section, allowing users to regenerate the code. TES 

uses input image data of surface radiance,     , and sky irradiance,   
 , to solve the TIR radiative 

transfer equation. The output images will consists of three emissivity images (  ) corresponding 

to MODIS bands 29, 31, 32, and one surface temperature image (T).  
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Figure 9. Flow diagram showing all steps in the retrieval process in generating the MODIS MOD21 LST&E 

product starting with TIR at-sensor radiances and progressing through atmospheric correction, cloud 

detection, and the TES algorithm.  
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Figure 10. Flow diagram of the TES algorithm in its entirety, including the NEM, RATIO, and MMD modules. 

Details are included in the text, including information about the refinement of     . 
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6.2.4 NEM Module 

The NEM builds upon the model emissivity algorithm (Lyon 1965) by allowing the 

initial      value to be consistent for all wavelengths. The role of NEM is to compute the 

surface kinetic temperature, T, and a correct shape for the emissivity spectrum. An initial value 

of 0.99 is set for     , which is typical for most vegetated surfaces, snow, and water. For 

geologic materials such as rocks and sand,      values are set lower than this, typically 0.96, 

and this value remains fixed. For all other surface types, a modification to the original NEM 

allows for optimization of      using an empirically based process. For the majority of materials 

in the ASTER spectral library, a typical range for      is 0.94 <      < 1.0. Therefore, for a 

material at 300 K, the maximum errors that NEM temperatures should have are ~±1.5 K, 

assuming the reflected sky irradiance has been estimated correctly. 

6.2.5 Subtracting Downwelling Sky Irradiance 

Generally the effects of sky irradiance are small with typical corrections of <1 K 

(Gillespie et al. 1998). However, the contribution becomes larger for pixels with low emissivity 

(high reflectance) or in humid conditions when the sky is warmer than the surface. Over 

graybody surfaces (water and vegetation), the effects are small because of their low reflectivity 

in all bands. The first step of the NEM module is to estimate ground-emitted radiance, which is 

found by subtracting the reflected sky irradiance from the surface radiance term: 

        
             

  (15)  

The NEM temperature, which we call     , is then estimated by inverting the Planck function 

for each band using      and the ground-emitted radiance and then taking the maximum of 

those temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects.  

 

   
  
  
    

      

     
     

  

 (16)  

               (17)  

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by     : 

 
  
  

  
        

 (18)  
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The new emissivity spectrum is then used to re-calculate   
      

       
     

 , and the process 

is repeated until convergence, which is determined if the change in    between steps is less than 

a set threshold,   , which is set as the radiance equivalent to NEΔT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of    versus iteration,  , increases such that            >   , where    is 

also set to radiance equivalent of NEΔT for the sensor (0.05 K for MODIS). In this case, 

correction is not possible, TES is aborted, and NEM values of    and      are reported in the 

QA data plane, along with an error flag. TES is also aborted and an error flag recorded if, for any 

iteration, the values of    fall out of reasonable limits, set to           . See Figure 10 for a 

detailed description of these steps.  

6.2.6 Refinement of      

Most pixels at MODIS resolution (1 km) will contain a mixed cover type consisting of 

vegetation and soil, rock and water. The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial      = 0.99 may be set to high and refinement of      is necessary to 

improve accuracy of     . The optimal value for      minimizes the variance, 𝜈, of the NEM 

calculated emissivities,   . The optimization of      is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for     = 0.99 is 

less than an empirically determined threshold (e.g., 𝑉        
   for ASTER ) (Gillespie et 

al. 1998). If the variance is greater than 𝑉 , then the pixel is assumed to predominately consist of 

either rock or soil. For this case,      is reset to 0.96, which is a good first guess for most rocks 

and soils in the ASTER spectral library, which typically fall between the 0.94 and 0.99 range. 

For MODIS the      values is set to 0.97, a typical value for bare surfaces in the 12 µm range. If 

the first condition is met, and the pixel is a near-graybody, then values for      of 0.92, 0.95, 

0.97, and 0.99 are used to compute the variance for each corresponding NEM emissivity 

spectrum. A plot of variance 𝜈 versus each      value results in an upward-facing parabola with 

the optimal      value determined by the minimum of the parabola curve in the range     

        . This minimum is set to a new     value, and the NEM module is executed again to 

compute a new     . Further tests are used to see if a reliable solution can be found for the 

refined     . If the parabola is too flat, or too steep, then refinement is aborted and the original 
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     value is used. The steepness condition is met if the first derivative (slope of 𝜈 vs.     ) is 

greater than a set threshold (e.g., 𝑉           for ASTER) and the flatness conditions is met 

if the second derivative is less than a set threshold (e.g., 𝑉           for ASTER). Finally, if 

the minimum      corresponds to a very low 𝜈, then the spectrum is essentially flat (graybody) 

and the original      = 0.99 is used. This condition is met if 𝜈    𝑉  (e.g., 𝑉          ). 

Table 5 shows typical output from various stages of the TES algorithm for pixels representing 

three different surface types: sand dunes, vegetated cropland, and semi-vegetated cropland for a 

MODIS scene on 29 August 2004 over the Imperial Valley, southeastern California. Note the 

different      value for each of these surface types. The dune pixel was set to 0.97 because of 

high variance in the NEM spectrum; the Salton Sea and shrubland pixels were set to 0.983, due 

to a lower spectral contrast.  

Table 5. Output from various stages of the MODTES algorithm for three surface types: sand dunes, Salton 

Sea, and shrubland transition zone for a MODIS test scene over the Imperial Valley, southeastern California.  

 Algodones Dunes Salton Sea Shrubland (transition zone) 

     0.97 0.983 0.97 

        MMD 0.166 0.006 0.088 

     0.817 0.975 0.886 

𝑻 𝑬  327.27 K 304.76 K 325.61 K 

𝑻𝑻𝑬𝑺 326.51 K 304.95 K 325.75 K 

6.2.7 Ratio Module 

In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

𝛽  spectrum as follows: 

 𝛽  
  
  

 (19)  

Typical ranges for the 𝛽  emissivities are      𝛽      , given that typical emissivities range 

from 0.7 to 1.0. Errors in the 𝛽  spectrum due to incorrect NEM temperatures are systematic.  

6.2.8 MMD Module 

In the MMD module, the 𝛽  emissivities are scaled to an actual emissivity spectrum using 

information from the spectral contrast or MMD of the 𝛽  spectrum. The MMD can then be 

related to the minimum emissivity,     , in the spectrum using an empirical relationship 
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determined from lab measurements of a variety of different spectra, including rocks, soils, 

vegetation, water, and snow/ice. From     , the actual emissivity spectrum can be found by re-

scaling the 𝛽  spectrum. First, the MMD of the 𝛽  spectrum is found by: 

 𝑀𝑀      𝛽        𝛽   (20)  

Then MMD can be related to      using a power-law relationship: 

           𝑀𝑀 
  , (21)  

where    are coefficients that are obtained by regression using lab measurements. For the three 

MODIS TIR bands between 8 and 12 µm (shown in Figure 2), the values for the coefficients 

were calculated as   = 0.985,          , and          . The TES emissivities are then 

calculated by re-scaling the 𝛽  emissivities: 

   
    𝛽  

    
     𝛽  

  (22)  

An example MODTES emissivity output image for band 29 (8.55 µm) is shown in Figure 

11 for an MODIS cutout on 29 August 2004 over the Imperial Valley, southeastern California. 

Bare areas, such as the Algodones Dunes running diagonally across the southeast corner, 

generally have emissivity <0.85, while graybody surfaces such as the Imperial Valley croplands 

and Salton Sea in the southwest corner of the image have higher emissivities, >0.95. Figure 12 

shows the differences in emissivity spectra between the NEM and TES output for pixels over 

three different surface types (sand dunes, Salton Sea water, and mixed shrubland) for the 

Imperial Valley cutout. Note that, although both NEM and TES have similar spectral shape, the 

emissivities of NEM are generally higher than TES because of the initial estimate of      in the 

NEM module. The Algodones Dunes spectrum has high spectral contrast, which is typical for a 

quartz spectrum that has the characteristic quartz doublet in the 8–10-µm region, while the 

emissivity of water is usually spectrally flat, and high. 

For pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of MMD 

calculated from TES is compromised and approaches a value that depends on measurement error 

and residual errors from incomplete atmospheric correction. For ASTER, which has a NEΔT of 

0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was 

explored to correct the apparent MMD using Monte Carlo simulations. For MODIS (NEΔT of 

0.05 K), we expect measurement errors to be minimal and atmospheric effects to be the largest 

contribution to MMD errors. A further problem for graybody surfaces is a loss of precision for  
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Figure 11. Clockwise from top left: MODIS cutouts of land surface emissivity for band 29 (8.55 µm); band 31 

(11 µm), surface temperature (K) and band 32 emissivity (12 µm); output from the TES algorithm over the 

Imperial Valley, southeastern California on 29 August 2004.  

 

Figure 12. MODIS derived TES and NEM emissivity spectra for three different surface types for the MODIS 

cutout shown in Figure 11: Algodones Dunes, Salton Sea, and shrublands (mixed soil and vegetation). 

Details of the TES and NEM outputs from these spectra are shown in Table 5. 
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low MMD values. This is due to the shape of the power-law curve of      vs. MMD at 

low MMD values, where small changes in MMD can lead to large changes in     . To address 

these issues, the ASTER TEWG initially proposed a threshold classifier for graybody surfaces. 

If MMD < 0.03, the value of      in equation (12) was set to 0.983, a value typical for 

water and most vegetated surfaces. However, this classification was later abandoned as it 

introduced large step discontinuities in most images (e.g., from vegetation to mixed-cover types). 

The consequence of removing the threshold classifier was that, over graybody surfaces, errors in 

emissivity could range from 0.01 to 0.05 (0.5 K to 3 K) due to measurement error and residuals 

errors from atmospheric correction (Gustafson et al. 2006; Hulley and Hook 2009b). For 

MOD21, we use original TES without classification and the WVS method to correct the 

atmospheric parameters on a pixel-by-pixel basis. 

For bare surfaces (rocks, soils, and sand), the error in NEM-calculated T may be as much 

as 2–3 K, assuming a surface at 340 K due to the fixed assumption of      = 0.96. This error can 

be corrected by recalculating T using the TES retrieved maximum emissivity,     
   , and the 

atmospherically corrected radiances,   . The maximum emissivity used as correction for 

reflected   
  will be minimal.  

 

     
  
    

    
      

   

       
     

  

 (23)  

An example MODTES surface temperature output image is shown in Figure 11. Bare 

areas of the Mojave desert generally have the highest temperatures with T > 330 K, while 

graybody surfaces such as the Imperial Valley croplands and Salton Sea in the southwest corner 

have the coolest temperatures with T < 310 K.  

In the original ASTER TES algorithm, a final correction is made for sky irradiance using 

the TES temperature and emissivities; however, this was later removed, as correction was 

minimal and influenced by atmospheric correction errors. This additional correction is not used 

for the MODTES algorithm.  

6.2.9 MMD vs.      Regression 

The relationship between MMD and      is physically reasonable and is determined 

using a set of laboratory spectra in the ASTER spectral library v2.0 (Baldridge et al. 2009) and 

referred to as the calibration curve. The original ASTER regression coefficients were determined 
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from a set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and snow 

supplied by J.W. Salisbury from Johns Hopkins University. One question that needed to be 

answered was whether using a smaller or larger subset of this original set of spectra changed the 

results in any manner. Establishing a reliable MMD vs.      relationship with a subset of 

spectral representing all types of surfaces is a critical assumption for the calibration curve. This 

assumption was tested using various combinations and numbers of different spectra (e.g., 

Australian rocks, airborne data, and a subset of 31 spectra from Salisbury), and all yielded very 

similar results to the original 86 spectra.  

For MODIS, the original 86 spectra were updated to include additional sand spectra used 

to validate the North American ASTER Land Surface Emissivity Database (NAALSED) (Hulley 

and Hook 2009b) and additional spectra for vegetation from the MODIS spectral library and 

ASTER spectral library v2.0, giving a total of 150 spectra. The data were convolved to the three 

MODIS TIR bands and      and 𝛽  spectra calculated using equation (9) for each sample. The 

MMD for each spectrum was then calculated from the 𝛽  spectra and regressed to the      

values. The relationship follows a simple power law given by equation (11), with regression 

coefficients   = 0.997,          , and          , and         . Figure 13 shows the 

power-law relationship between MMD and      using the 150 lab spectra.  

 

Figure 13. MODIS and ASTER calibration curves of minimum emissivity vs. MMD. The lab data (crosses) are 

computed from 150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, 

vegetation, and ice). 
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6.2.10 Atmospheric Effects 

The accuracy of the atmospheric correction technique used to estimate the surface 

radiance relies on the accuracy of the variables input to the radiative transfer model (e.g., air 

temperature, relative humidity, and ozone). A sensitivity analysis has shown (Table 1) that a 

change in atmospheric water vapor of 20% leads to a 4.43% change in radiance for MODIS band 

12 (12 µm), which is the most susceptible to atmospheric absorption and emission of the three 

MODIS TIR bands, while a change in air temperature of 2 K leads to a 1.6% change in 

radiance for a tropical atmosphere. Changes in ozone and aerosol amount had much smaller 

effects, except for MODIS band 29 (8.55 µm), which falls closer to the ozone absorption region 

at 9.6 µm. These atmospheric errors tend to be highly correlated from band to band, since each 

channel has a characteristic absorbing feature. As a result, the effect on TES output is usually 

relatively small, but if these errors are uncorrelated from band to band then much larger errors 

can occur, particularly for graybodies, where small changes in MMD can significantly alter the 

shape of the emissivity spectrum. For example, over water bodies, errors in emissivity of up to 

3% (0.03) have been found due to uncompensated atmospheric effects (Hulley and Hook 2009b; 

Tonooka and Palluconi 2005).  

One method for improving the accuracy of the surface radiance product is to apply the 

WVS method (Tonooka 2005). Using 183 ASTER scenes over lakes, rivers, and sea surfaces, it 

was found that using the WVS method instead of the standard atmospheric correction improved 

estimates of surface temperature from 3 to 8 K in regions of high humidity (Tonooka 2005). 

These are substantial errors when considering that the required accuracy of the TES algorithm is 

~1 K (Gillespie et al. 1998).  

Figure 14 shows emissivity spectra over the Salton Sea, showing the effects of applying 

the WVS atmospheric correction method on the shape of the emissivity spectrum when 

compared to using the standard (STD) correction method without WVS. The emissivity spectrum 

of water is high (~0.98) and flat and the results in Figure 14 show a dramatic improvement in 

emissivity accuracy in both magnitude (up to 0.06 for ASTER band 11, and 0.09 for MODIS 

band 29) and spectral shape when using the WVS as opposed to the STD method. Because of the 

humid day, where MOD07 precipitable water vapor (PWV) values were around 4 cm over the 

water, the spectral contrast of the STD emissivity results are overestimated for ASTER and 

MODIS data. However, when applying the WVS method, the ASTER emissivity spectra fall 
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within 0.015 of the lab-measured spectrum, while MODIS emissivity spectra are within 0.005 at 

all wavelengths. Differences between the 3- and 5-band TES algorithm applied to ASTER data 

were small. 

 

Figure 14. Emissivity spectra comparisons on June 15, 2000 over the Salton Sea between ASTER (3-band), 

ASTER (5-band), and MODTES, using the TES algorithm along with lab spectra of water from the ASTER 

spectral library. Results from the WVS method and the STD atmospheric correction are also shown. An 

estimate of the PWV from the MOD07 atmospheric product indicates very high humidity on this day. 

7 Advantages of TES over SW approaches 

The LST accuracy of SW algorithms is strongly dependent on emissivity variability (Wan 

and Dozier 1996; Yu et al. 2005). Any errors in the assigned SW classification emissivities can 

translate into large errors in LST. For example, Galve et al. (2008) showed that, on average, a 

band emissivity error of 0.005 (0.5%) will result in an LST error of 0.7 K using the SW 

approach. The sensitivity of the current MODIS GSW algorithm to the view zenith angle is of 

roughly of the same magnitude as emissivity, but can be compensated for by introducing an 

atmospheric path-length term, while sensitivity to differences in surface and air temperature are 

typically much smaller, but can be large over bare areas.  
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Classification emissivity errors can stem from three main sources: 1) misclassification in 

the original cover type, 2) errors in emissivity within the cover-type map, or 3) a dynamic change 

in the cover-type map. A misclassification in cover type will occur when the land class algorithm 

does not classify the true cover type correctly. According to a validation study on MODIS land 

cover product, it was found that the accuracy of individual classes ranged from 60–90% (Strahler 

et al. 2002). Emissivity errors within a cover-type map occur when a class (e.g., barren) does not 

represent the range in emissivities within that class. And lastly, dynamic errors occur after 

sudden natural surface changes, e.g., rainfall, wildfires, or phenological changes, resulting in 

emissivity changes within the land cover type. Error sources 1) and 3) can be grouped together 

since they both arise due to misclassification.  

7.1 Land Cover Misclassification 

The first emissivity error source we investigate arises from land cover misclassification. 

We looked at the effects of a dynamic land cover change on emissivity and LST retrieved values 

after the Station fire in Los Angeles, which burned nearly 161,000 acres of land in the Angeles 

National Forest region from 26 August–19 September 2009. Figure 15 shows emissivity (left 

panels) and LST images (right panels) for ASTER and MODIS data on 10 October 2009. Top 

and middle panels show ASTER and MODIS (MODTES) results using the TES algorithm, and 

bottom panels show the MOD11 band 31 (11 µm) emissivity classification (left) and MOD11 

LST (right). 

The Station fire burn area is clearly seen in the center of the ASTER and MODTES 

results as an area of lower emissivity in the longwave region, and is roughly 0.04 (4%) lower 

than a typical value for vegetation of 0.98. This decrease in emissivity is not evident in the 

MODIS GSW results in which the emissivity has been assigned to a forest land cover type with a 

value of 0.981. The ASTER and MODIS TES results show corresponding high LSTs (320–

325 K) over the burn region, while MOD11 LSTs are 5–12 K lower and range from 312–316 K 

over the burn scar area as shown in Figure 1–4. This is a direct consequence of not taking the 

change in emissivity into account. This error far exceeds the specification for the MODIS 

product (1 K) (Wan 1999) and the VIIRS product (2.5K) (Yu et al. 2005).  
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Figure 15. Emissivity images (left) and surface temperature images (right) for ASTER (top), MODIS TES 

(MODTES) (center) and MODIS SW (MOD11_L2) (bottom) products over the Station Fire burn scar just north 

of Pasadena, CA. Location of JPL in Pasadena and burn scar area indicated at top right. MODTES and 

ASTER results match closely; however, the MOD11_L2 temperatures are underestimated by as much as 

12 K, due to an incorrect emissivity classification. 

7.2 Emissivity Error within Cover Type 

The second major emissivity error in land-cover–type algorithms occurs when the 

classification is correct, but the emissivities assigned to the class are incorrect. Here we show an 

example over Mauna Loa caldera in Hawaii (Figure 16). The caldera is approximately 5×3 km in 

size and consists of flat, smooth pahoehoe basalt with minimal vegetation (Sabol et al. 2009). 

Figure 16 shows an ASTER emissivity image (9.1 µm) of the Mauna Loa region on the 5 June 

2000 with the caldera indicated on the map. The accompanying emissivity spectra show ASTER, 
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MODTES and MOD11 classification-based emissivities for bands 31 and 32. It is clear the 

ASTER and MODTES spectra match closely and show the characteristic basalt emissivity 

minima in the 10.5–11.5 µm region, while the MOD11 classification emissivities are too high by 

almost 0.1 in band 31, and 0.04 in band 32. Consequently there is a large discrepancy of up to 

12 K between the MODTES and the MOD11 LST product as a result of MOD11 

misclassification. This far exceeds the specification for the MOD11 product accuracy (1 K) 

(Wan 1999) and the VIIRS product (2.5 K) (Yu et al. 2005). 

 
 

Figure 16. (left) ASTER band 12 (9.1 µm) emissivity image over Mauna Loa caldera, Hawaii on 5 June 2000, 

and (right) emissivity spectra from ASTER, MODTES, and MOD11 emissivity classification. While ASTER and 

MODTES agree closely, MOD11 emissivities are too high, resulting in large LST discrepancies between 

MODTES and MOD1 (12 K) due to misclassification in bands 31 (11 µm) and 32 (12 µm). 

7.3 Soil Moisture Effects 

LST errors of this magnitude will occur in a systematic fashion any time that the 

classification emissivities do not reflect the true spectral shape of the surface being measured. 

Other factors contributing to emissivity variability include rainfall, which increases the surface 

soil moisture, and therefore the emissivity due to lower reflectance over bare surfaces.  

An example of the effects of rainfall on the emissivity is shown in Figure 17. Hulley et al. 

(2010) used a case study over the Namib desert to show that the emissivity of bare soils retrieved 

from physical algorithms such as TES and the MODIS day/night algorithm increased by up to 

0.03 due to soil moisture changes in the thermal bands used by SW algorithms (11 µm), while 

the SW emissivity values were held constant throughout the rainfall period (19–23 April). The 
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MODIS SW product had cooler mean temperatures of more than 2 K as a result of not taking 

into account these emissivity changes. Again, a 0.5–1 K LST error can lead to a 10% error in 

sensible heat flux and evapotranspiration, and a 1–3 K error can lead to surface flux errors of up 

to 100 W/m
2 
(Yu et al. 2005). Other examples of emissivity misclassification could occur due to 

intra-annual crop rotation, where fields may go from bare to fully vegetated over short time 

periods. 

 

 

Figure 17. (top) Emissivity variation for a rainfall event over the Namib desert showing results from 

MOD11B1 v4 (day/night algorithm), MOD11_L2 (SW), and MODIS TES (MODTES). (bottom) Corresponding 

soil moisture variation from AMSRE-E and rainfall estimates from the Tropical Rainfall Measuring Mission 

(TRMM). It is clear that the physical retrievals, show increases in emissivity due to soil moisture, whereas the 

SW values are held constant throughout the rainfall period from 15–21 April. From Hulley et al. (2010). 

8 Quality Assessment and Diagnostics 

The T and   products will need to be assessed using a set of quality control (QC) flags. 

These QC flags will involve automatic tests processed internally for each pixel and will depend 

on various retrieval conditions such as whether the pixel is over land or ocean surface, the 

atmospheric water vapor content (dry, moist, very humid, etc.), and cloud cover. The data quality 

attributes will be set automatically according to parameters set on data conditions during 

algorithm processing and will be assigned as either “bad,” “suspect,” or “good.” Estimates of the 

accuracy and precision of the T and   product will be reported in a separate data plane. At each 

step in the TES algorithm, a variety of performance information will be output, which will give 
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the user a summary of algorithm statistics in a spatial context. This type of information will be 

useful for determining surface type, atmospheric conditions, and overall performance of TES.  

The architecture of the MODIS T and   QA data plane will closely resemble that of 

ASTER (Gillespie et al. 1998). It will consist of header information followed by three 8-bit QA 

data planes. The structure of the first QA data plane will consist of three primary fields, which 

are detailed in Table 6: 

1. Data Quality Field: “bad,” “suspect,” or “good,” to be assigned to specific bit patterns. 

2. Cloud Mask Field: Outputs from cloud mask statistics, e.g., optically thick or thin cloud, 

cirrus or contrails, clear, or snow/ice determined from NDSI threshold.  

3. Cloud Adjacency: Clear pixels defined in the cloud mask will be assigned an adjacency 

category dependent on distance to the nearest cloud defined quantitatively by the number of 

pixels (e.g., very close, close, far, very far).  

The structure of the second QA data plane will consist of performance metrics output 

from various stages of the TES algorithm, detailed in Table 7: 

1. The final value of      used in the NEM module after optimization (if necessary).  

2. Number of iterations needed to remove reflected downwelling sky irradiance. 

3. Atmospheric opacity test for humid scenes, using   
     test. 

4. MMD regime: MMD < 0.3 (near-graybody) or MMD > 0.3 (likely bare). 
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Table 6. Quality assurance (QA) data plane 1 description of the three data fields: data quality, cloud mask, 

and cloud adjacency. 

Data Field Category Bits Description 

Data Quality “Excellent’ 11 Good quality, no further QA info necessary 

 “Good” 10 Good quality, but possible cloud adjacency effects; further QA 
examination necessary. 

 “Suspect’ 01 Out of range data values 
Suspect input quality data flag 
Perimeter effects from thick/thin cloud 
Humid scene 
Fairly calibrated 

 “Bad” 00 Bad pixel labeled in L1A data 
TES algorithm abort flag 
TES algorithm divergence flag 
TES convergence issues (only NEM values output) 
Poorly calibrated, or ocean pixel 

Cloud Mask Thick cloud 11 Optically thick cloud detected with high reflectance 

 Thin cloud 10 Optically thin cloud detected with medium or low reflectance 

 Cirrus 01 Cirrus test indicated cirrus, haze, or jet contrails present 

 Clear 00 No clouds detected 

Cloud Adjacency Very near 11 Pixel is <5 pixels from nearest cloud 

 Near 10 Pixel within 5–15 pixels of nearest cloud 

 Far 01 Pixel within 15–30 pixels of nearest cloud 

 Very far 00 Pixel >30 pixels from nearest cloud 

Table 7. Quality assurance (QA) data plane 2 description of output diagnostics from the TES algorithm. 

Data Field Category Bits Description 

     >0.98 11 Graybodies (water, vegetation, snow) 

 0.96–0.98 10 Nominal value  

 0.94–0.96 01 Bare surfaces, silicate rocks 

 <0.94 00 Error condition (atmospheric correction) 

Iterations ≥7 11 Slow convergence 

 6 10 Nominal performance 

 5 01 Nominal performance 

 4 00 Fast convergence 

  
     ≥0.3 11 Warm, humid air; or cold land 

 0.2–0.3 10 Nominal value 

 0.1–0.2 01 Nominal value 

 ≥0.1 00 Dry conditions, or high altitude scene 

MMD ≥0.3 10 Low spectral contrast, graybody surface 

 >0.3 00 High spectral contrast, most bare surfaces 
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9 Uncertainty Analysis 

NASA has identified a major need to develop long-term, consistent products valid across 

multiple missions, with well-defined uncertainty statistics addressing specific Earth-science 

questions. These products are termed Earth System Data Records (ESDRs), and LST&E has 

been identified as an important ESDR. Currently a lack of understanding of LST&E uncertainties 

limits their usefulness in land surface and climate models. In this section we present results from 

an LST&E uncertainty simulator that has been developed to quantify and model uncertainties for 

a variety of TIR sensors and LST algorithms (Hulley et al. 2012). Using the simulator, 

uncertainties were estimated for the MOD21 LST&E product, including WVS. These 

uncertainties are parameterized according to view angle and estimated total column water vapor 

for application to real MODIS data. 

9.1 The Temperature and Emissivity Uncertainty Simulator 

A Temperature Emissivity Uncertainty Simulator (TEUSim) has been developed for 

simulating LST&E uncertainties from various sources of error for the TES and SW algorithms in 

a rigorous manner for any appropriate TIR sensor. These include random errors (noise), 

systematic errors (calibration), and spatio-temporally correlated errors (atmospheric). The 

MODTRAN 5.2 radiative transfer model is used for the simulations with a global set of 

radiosonde profiles and surface emissivity spectra representing a broad range of atmospheric 

conditions and a wide variety of surface types. This approach allows the retrieval algorithm to be 

easily evaluated under realistic but challenging combinations of surface/atmospheric conditions. 

The TEUSim is designed to separately quantify error contributions from the following potential 

sources: 

 Noise  

 Model  

 Atmospheric correction  

 Undetected cloud  

 Calibration 

The results presented in this study will focus on the first three of these error sources: noise, 

model, and atmosphere.  
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9.2 Atmospheric Profiles 

The TEUSim uses a global set of atmospheric radiosoundings constructed from the 

University of Wyoming Atmospheric Science Department’s CLAR database (Galve et al. 2008). 

CLAR contains 382 globally distributed radiosoundings for both day and night in 65 layers from 

the surface to 100 km. The CLAR database includes a wide range of TCW estimates up to 7 cm 

and surface air temperature ranging from 20º C to 40º C. Radiosondes acquired from 2003 to 

2006 were distributed over three latitude ranges (40% from 0º–30º, 40% from 30º–60º, 20% 

above 60º) and screened for cloud and fog contamination using a procedure described by 

Francois et al. (2002).  

9.3 Radiative Transfer Model 

In TEUSim the latest version of MODTRAN (v5.2) was used for the radiative transfer 

calculations. MODTRAN 5.2 uses an improved molecular band model, termed the Spectrally 

Enhanced Resolution MODTRAN (SERTRAN), which has a much finer spectroscopy (0.1 cm
-1

) 

than previous versions (1–2 cm
-1

). This results in higher accuracy in modeling of band 

absorption features in the longwave TIR window regions, and comparisons with line-by-line 

models has shown good accuracy (Berk et al. 2005).  

9.4 Surface End-Member Selection 

A selection of emissivity spectra from the ASTER Spectral Library v2.0 (ASTlib) 

(Baldridge et al. 2009) were used to define the surface spectral emission term in MODTRAN. A 

total of 59 spectra were chosen based on certain criteria and grouped into four surface 

classifications: rocks (20), soils (26), sands (9), and graybodies (4). The doublets between 8–

9.5 µm and 12.5–13 µm are the result of Si-O stretching, and the exact position of the feature at 

11.2 µm is dependent on the size of the cation paired with the carbonate (CO3) molecule. Spectra 

were chosen to represent the most realistic effective emissivities observed at the remote sensing 

scales of ASTER (90 m) and MODIS (1 km) using the following methodology.  

For rocks, certain spectra were removed prior to processing based on two considerations. 

First, samples that rarely exist as kilometer-scale, sub-aerial end-member exposures on the 

Earth’s surface such as pyroxenite or serpentinite were eliminated. Second, and in parallel, 

spectrally similar samples were eliminated. Spectral similarity was defined by the location, 
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shape, and magnitude of spectral features between 7 and 13 µm. All eliminated samples are 

represented in the final selection through spectrally-similar end-member types. The final rock set 

included 20 spectra.  

ASTlib includes 49 soil spectra classified according to their taxonomy, such as Alfisol 

(9), Aridisol (14), Entisol (10), Inceptisol (7) and Mollisol (9). Filtering in this case was based 

solely on spectral similarity between each taxonomy type. The final soils set included 26 soil 

spectra.  

A set of nine emissivity spectra collected in separate field campaigns during 2008 over 

large homogeneous sand dune sites in the southwestern United States in support of validation for 

the NAALSED v2.0 (Hulley et al. 2009a) were used for sands. The sand samples consist of a 

wide variety of different minerals including quartz, magnetite, feldspars, gypsum, and basalt 

mixed in various amounts, and represent a broad range of emissivities in the TIR as detailed in 

Hulley et al. (2009a).  

To represent graybody surfaces, spectra of distilled water, ice, snow, and conifer were 

chosen from ASTlib. Four spectra were sufficient to represent this class since graybody surfaces 

exhibit low contrast and high emissivities. It should be noted that certain types of man-made 

materials were not included, such as aluminum roofs that do not occur at the spatial resolution of 

these sensors, but should be included for higher-spatial-resolution data sets such as those 

provided by airborne instruments. 

9.5 Radiative Transfer Simulations 

In the TEUSim, each CLAR radiosonde profile for each set of end-member spectra was 

used as an input to MODTRAN 5.2. A seasonal rural aerosol was assumed with standard profiles 

for fixed gases within MODTRAN. For MODIS, five viewing angles were used, representing the 

Gaussian angles proposed by Wan and Dozier (1996): 0°, 11.6°, 26.1°, 40.3°, and 53.7°. In the 

WVS simulation model, the downward sky irradiance,   ( ), can be modeled using the path 

radiance, transmittance, and view angle. To simulate the downward sky irradiance in 

MODTRAN, the sensor target is placed a few meters above the surface, with surface emission 

set to zero, and view angle set at the prescribed angles above. In this configuration, the reflected 

downwelling sky irradiance is estimated for a given view angle. The total sky irradiance 
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contribution for band i is then calculated by summing the contribution of all view angles over the 

entire hemisphere: 

 

  
      

                    

   

 

  

 

 
(24)  

where   is the view angle and   is the azimuth angle. To minimize computational time, the 

downward sky irradiance is first modeled as a non-linear function of path radiance at nadir view 

using (1) (Tonooka 2001): 

   
             

           
        (25)  

where   ,   , and    are regression coefficients, and   
       is computed by: 

 
  
         

       
         

    

         
 

(26)  

Equations (2) and (3) were used to estimate the downwelling sky irradiance in the TEUSim 

results using pre-calculated regression coefficients for MODIS bands 29, 31, and 32. The 

reflected sky irradiance term is generally smaller in magnitude than the surface-emitted radiance, 

but needs to be taken into account, particularly on humid days when the total atmospheric water 

vapor content is high. The simulated LST is based on the surface air temperature in the CLAR 

database as follows:  

                (27)  

where        and      are the simulated LST and surface air temperature. Galve et al. (2008) 

found a mean    of +3 K and standard deviation of 9 K from a global study of surface-air 

temperature differences over land in the MODIS MOD08 and MOD11 products. We therefore 

defined    as a random distribution with a mean of 3 K and a standard deviation of 9 K for each 

profile input to MODTRAN. 

The TES algorithm uses surface radiance as input, which can be derived from the 

atmospheric transmittance   ( ), TOA radiance   ( ), path radiance   
 ( ), and downward sky 

irradiance   
 ( ). To calculate the various sources of error in LST&E retrievals from TES, these 

variables were simulated for the following conditions:  

1. Perfect atmosphere (i.e., exact inputs):   ( ) and atmospheric parameters   ( ),   
 ( ), and 

  
 ( ) calculated using a given profile, surface type and viewing angle;  
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2.   ( ) and adjusted atmosphere (i.e., imperfect inputs):   
  ( ),   

  ( ), and   
  ( ) calculated 

using perturbed temperature and humidity profiles to simulate real input data;  

3. Adjusted atmosphere as in (2) but with humidity scaled by a factor of 0.7 for deriving inputs 

to the WVS method; and  

4.   ( ) calculated using a graybody surface type (conifer was chosen with emissivity close to 

0.99), as the scaling factors in the WVS method are initialized over graybody surfaces.  

The above conditions were run for ‘perfect’   ( ) and also with adding random noise to 

the radiances based on the sensor’s noise equivalent delta temperature NET (0.05 K for 

MODIS). 

The WVS method is used for improving the accuracy of the atmospheric parameters 

output from MODTRAN using an EMC/WVD algorithm that models the surface brightness 

temperature (BT) given the at-sensor brightness temperature along with an estimate of the total 

water vapor (Tonooka 2001, 2005). The modeled surface BT is then used to determine a WVS 

correction factor, which for real data is first calculated over all graybody pixels on a given scene 

and then spatially interpolated using an inverse distance method over the remaining non-

graybody pixels within the scene. Simulation Steps (3) and (4) are needed to simulate the input 

for the WVS method.  

9.6 Error Propagation 

The set of 382 CLAR radiosonde profiles were adjusted to simulate real data by applying 

estimated uncertainties from the MODIS MOD07 atmospheric product (Seemann et al. 2006; 

Seemann et al. 2003). Using a dataset of 80 clear sky cases over the SGP ARM site (Tobin et al. 

2006), MOD07 air temperature RMS errors showed a linearly decreasing trend from 4 K at the 

surface to 2 K at 700 mb, and a constant 2 K above 700 mb (Seemann et al. 2006). These 

reported values were used to perturb the air temperature profiles at each associated level using a 

random number generator with a mean centered on the RMS error. The uncertainty of the water 

vapor retrievals were estimated to be between 10–20% (Seemann et al. 2006). Accordingly, the 

relative humidity profiles were adjusted by scaling factors ranging from 0.8 to 1.2 in 

MODTRAN using a uniformly distributed random number generator.  

The total LST uncertainty for the TES algorithm based on model, atmospheric and 

measurement noise contributions can be written as: 
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    (28)  

where       is the model error due to assumptions made in the TES calibration curve,       is 

the atmospheric error, and       is the error associated with measurement noise. These errors 

are assumed to be independent. 

To calculate the separate contributions from each of these errors let us first denote the 

simulated atmospheric parameters as x            
    ,   

    ] and simulated observed radiance 

parameter as        . Both   and   are required to estimate the surface radiance that is input 

to the TES algorithm. In reality, however, the input parameters   are not known explicitly, but 

are associated with some error,   , which we write as        . Similarly, the observed 

radiances have an associated noise based on the NET of the specific sensor, which we will 

denote by   . To characterize the model error, we express the TES algorithm as a function based 

on perfect input parameters   and   such that             ). The model error,      , i.e., 

due to assumptions in the TES algorithm alone, can then be written as: 

                         
           (29)  

where        is the simulated LST used in the MODTRAN simulations, and          denotes 

the mean-square error between the retrieved and simulated LST for inputs   and  . The 

atmospheric error can be written as the difference between TES using perfect atmospheric inputs, 

  and imperfect inputs,   : 

 
                         

 
      

   

 (30)  

And lastly the error due to measurement noise can be written as the difference between TES with 

perfect simulated TOA radiances,   and TES with noisy radiances,   : 

 
                         

 
      

   

 (31)  

Since the TES algorithm simultaneously retrieves the LST and spectral emissivity, the above 

equations also apply to the corresponding emissivity retrieval for each band. 

The effects of sensor view angle on the accuracy of MODIS TES retrievals of LST are 

shown in Figure 18. LST uncertainties are plotted against TCW for four simulated Gaussian 

view angles of 0°, 26.1°, 40.3°, and 53.7°. It is clear that the uncertainties become larger with 

both TCW and view angle; however, this is due to TCW in both cases. A TCW amount of 4 cm 

at a 53.7° view angle has an effective TCW of 6.2 cm, due to an increase in atmospheric path 

length increases by a factor of cos
-1

(53.7°). The LSTs are underestimated at higher view angles 
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by as much as 10 K, most likely due to unaccounted-for non-linear effects in the radiative 

transfer process due to longer atmospheric pathlengths. For real data, angular anisotropy of 

surface emissivity will also result in higher uncertainties at view angles above ~40° due to non-

Lambertian behavior of certain types of soils and sands (Snyder et al. 1997), and also from 

highly structured (3-D) surfaces such as shrublands, savannas, woodlands and forests. This 

variability primarily arises from the changing proportions of scene endmembers visible at 

different view zenith angles (Yu et al. 2006). 

 

Figure 18. MODIS LST uncertainties using the TES algorithm versus TCW for four viewing Gaussian angles 

of 0°, 26.1°, 40.3°, and 53.7°. The value n represents the number of data points used for a specific land 

surface type, in this case bare surfaces (rocks, soils, sands). 
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9.7 Parameterization of Uncertainties  

A key requirement for generating LST&E ESDR from either multiple sensors or 

algorithms is accurate knowledge of uncertainties from the contributing products. Uncertainties 

for each input product must be rigorously estimated for a variety of different conditions on a 

pixel-by-pixel basis before they can be merged and incorporated into a time series of 

measurements of sufficient length, consistency, and continuity to adequately meet the science 

requirements of an ESDR. Current LST&E datasets are available with quality control 

information, but do not include a full set of uncertainty statistics. For example, the standard 

ASTER and MODIS LST product QC data planes specify qualitative uncertainty information, 

and MODIS includes a rough estimate of LST&E error, but no uncertainty data-planes exist on a 

pixel-by-pixel basis dependent upon factors such as land cover type, view angle, and total 

column water vapor.  

The next logical step is to apply the uncertainty statistics produced from the TEUSim to 

real data from MOD21 retrievals. To achieve this the total uncertainty, taken as the RMSE of the 

differences between simulated (truth) and retrieved LST&E including atmospheric error, was 

modeled according to view angle, total water vapor column amount, and land surface type using 

a least-squares method fit to a quadratic function. Three surface types were classified: graybody, 

transitional, and bare. The transitional surface represents a mixed cover type, and was calculated 

by varying the vegetation fraction cover percentage,   , by 25, 50, and 75% for the set of bare 

surface spectra (rocks, soils, sand) as follows:  

                              (32)  

where        is the transition emissivity,       is a graybody emissivity spectrum (e.g., conifer), 

and       are the lab emissivities for bare surfaces. 

For MODIS, the total uncertainty includes both a sensor view angle (SVA) and TCW 

dependence. The total uncertainty for MODIS LST can be expressed as: 

                                 𝑉        
     𝑉 

  (33)  

Similarly, the band-dependent emissivity uncertainties can be expressed as: 

                                         𝑉         
       𝑉 

  (34)  

where      is the LST uncertainty (K) calculated as the difference between the simulated and 

retrieved LST,     is the band-dependent emissivity uncertainty for band i, calculated as the 
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difference between the input lab emissivity and retrieved emissivity, and    and      are the LST 

and emissivity regression coefficients and depend on surface type (graybody, transition, bare).  

A sensitivity study showed that the parameterizations given by equations 10–13 provided 

the best fit to the simulation results in terms of RMSE, with fits of ~0.1 K. Once the coefficients 

are established they can be applied on a pixel-by-pixel basis across any scene given estimates of 

TCW from either a retrieval (e.g., MODIS MOD07 or AIRS) or a numerical weather model (e.g., 

ECMWF, NCEP), and the SVA from the product metadata. A simple emissivity threshold using a 

band with large spectral variation can be used to discriminate between graybody, transition, and 

bare types in any given scene for application of the relevant coefficients. 

Figure 19(a) shows the retrieved LST using the TES algorithm with WVS correction and 

corresponding uncertainty in Figure 19(c), while Figure 19(b) shows the retrieved emissivity for 

band 29 and corresponding uncertainty in Figure 19(d). The highest LST uncertainties range 

from 2–3 K in the monsoonal region to over 5 K on the edges of cloudy regions, where 

uncertainties are highest as expected. Over most of the scene where TCW values are <2 cm, the 

LST uncertainties are generally <1.5 K. Similar to the LST results, the uncertainties in band 29 

emissivity are highest over the monsoonal region, ranging from 0.03–0.05, and along the edges 

of clouds. Over drier regions of California and Nevada, there is a stronger uncertainty correlation 

with cover type, with lowest uncertainties over the denser forests of the Sierra Nevadas (~0.015) 

and slightly higher over bare and mixed regions (~0.02). For this scene, retrievals were restricted 

to view angles <40º, so uncertainty dependencies related to view angle are not evident; however, 

at angles >40º the uncertainties for both LST and emissivity increase noticeably due to reasons 

discussed earlier. 
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Figure 19. MODIS TES retrievals including WVS correction over the southwestern United States on 7 August 

2004: (a) (top left) LST, (b) (top right) emissivity for band 29 (8.55 µm), (c) (bottom left) LST uncertainty, and 

(d) (bottom right) emissivity uncertainty for band 29 (8.55 µm). White areas over land indicate areas of cloud 

that have been masked out using the MOD35 cloud mask product.  
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10 Validation  

Two methods have been established for validating MODIS LST data: a conventional T-

based method and an R-based method (Wan and Li 2008). The T-based method requires ground 

measurements over thermally homogenous sites concurrent with the satellite overpass, while the 

R-based method relies on a radiative closure simulation in a clear atmospheric window region to 

estimate the LST from top of atmosphere (TOA) observed brightness temperatures, assuming the 

emissivity is known from ground measurements. The T-based method is the preferred method, 

but it requires accurate in-situ measurements that are only available from a small number of 

thermally homogeneous sites concurrently with the satellite overpass. The R-based method is not 

a true validation in the classical sense, but it does not require simultaneous in-situ measurements 

and is therefore easier to implement both day and night over a larger number of global sites; 

however, it is susceptible to errors in the atmospheric correction and emissivity uncertainties. 

The MOD11_L2 LST product has been validated with a combination of T-based and R-based 

methods over more than 19 types of thermally homogenous surfaces including lakes (Hook et al. 

2007), dedicated field campaign sites over agricultural fields and forests (Coll et al. 2005), 

playas and grasslands (Wan et al. 2004; Wan 2008), and for a range of different seasons and 

years. LST errors are generally within ±1 K for all sites under stable atmospheric conditions 

except semi-arid and arid areas, which had errors of up to 5 K (Wan and Li 2008).  

Initial testing and validation of the MOD21 emissivity product has shown good 

agreement with the North American ASTER Land Surface Database (NAALSED) v2.0 

emissivity product (Hulley et al. 2009a) and in-situ data over nine pseudo-invariant sand dune 

sites in the southwestern United States to <0.02 (2%) (Hulley and Hook 2011). NAALSED was 

validated over arid/semi-arid regions using nine pseudo-invariant sand dune sites in the 

western/southwestern United States. The emissivity of samples collected at each of the nine sites 

was determined in the laboratory using a Nicolet 520 FT-IR spectrometer and convolved with the 

appropriate ASTER system response functions. Validation of emissivity data from space ideally 

requires a site that is homogeneous in emissivity at the scale of the imagery, allowing several 

image pixels to be validated over the target site. The nine sand dune validation sites chosen for 

the ASTER study and planned for use with the MOD21 product are: Great Sands National Park, 

Colorado; White Sands National Monument, New Mexico; Kelso Dunes, California; Algodones 
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Dunes, California; Stovepipe Wells Dunes, California; Coral Pink Sand Dunes, Utah; Little 

Sahara Dunes, Utah; Killpecker Dunes, Wyoming; and Moses Lake Basalt Dunes, Washington. 

A validation study at the Land Surface Analysis–Satellite Application Facility (LSA-

SAF) Gobabeb validation site in Namibia showed that MOD21 LSEs matched closely with in-

situ emissivity data (~1%), while emissivities based on land cover classification products (e.g., 

SEVIRI, MOD11) overestimated emissivities over the sand dunes by as much as 3.5% (Gottsche 

and Hulley 2012). R-based validation of the MOD21 product is currently underway over nine 

pseudo-invariant sites in southwestern United States, and the Lake Tahoe and Salton Sea cal/val 

sites.  

For the MOD21 product we plan to use in-situ data from a variety of ground sites 

covering the majority of different land-cover types defined in the International Geosphere-

Biosphere Programme (IGBP). The sites will consist of water, vegetation (forest, grassland, and 

crops), and barren areas (Table 8). 

Table 8. The core set of global validation sites according to IGBP class to be used for validation and 

calibration of the MODIS MOD21 land surface temperature and emissivity product.  

10.1 Water Sites 

For water surfaces, we will use the Lake Tahoe, California/Nevada, automated validation 

site where measurements of skin temperature have been made every two minutes since 1999 and 

are used to validate the mid and thermal infrared data and products from ASTER and MODIS 

(Hook et al. 2007). Water targets are ideal for cal/val activities because they are thermally 

homogeneous and the emissivity is generally well known. A further advantage of Tahoe is that 

the lake is located at high altitude, which minimizes atmospheric correction errors, and is large 

IGBP Class Sites 

0 Water Tahoe, Salton Sea, CA 

1,2 Needle-leaf forest Krasnoyarsk, Russia; Tharandt, Germany; Fairhope, Alaska 

3,4,5 Broad-leaf/mixed forest Chang Baisan, China; Hainich, Germany; Hilo, Hawaii 

6,7 Open/closed shrublands Desert Rock, NV; Stovepipe Wells, CA 

8,9,10 Savannas/Grasslands Boulder, CO; Fort Peck, MT 

12 Croplands Bondville, IL; Penn State, PA; Sioux Falls, SD; Goodwin Creek, MS 

16 Barren  Algodones Dunes, CA; Great Sands, CO; White Sands, NM; Kelso Dunes, CA; Namib 
Desert, Namibia; Kalahari Desert, Botswana 
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enough to validate sensors from pixel ranges of tens of meters to several kilometers. Figure 20 

shows an example of differences between the standard MODIS (MOD11_L2) and ASTER 

(AST08) LST products and in-situ measurements at Lake Tahoe. The MODIS product is 

accurate to ±0.2 K, while the ASTER product has a bias of 1 K due to residual atmospheric 

correction effects. The typical range of temperatures at Tahoe is from 5°C to 25°C. More 

recently in 2008, an additional cal/val site at the Salton Sea was established. Salton Sea is a low-

altitude site with significantly warmer temperatures than Lake Tahoe (up to 35°C), and together 

they provide a wide range of different conditions.  

  

Figure 20. Difference between the MODIS (MOD11_L2) and ASTER (AST08) LST products and in-situ 

measurements at Lake Tahoe. The MODIS product is accurate to ±0.2 K, while the ASTER product has a bias 

of 1 K due to residual atmospheric correction effects. 

10.2 Vegetated Sites 

For vegetated surfaces (forest, grassland, savanna, and crops), we will use a combination 

of data from the Surface Radiation Budget Network (SURFRAD), FLUXNET, and NOAA-CRN 

sites. For SURFRAD, we will use a set of six sites established in 1993 for the continuous, long-

term measurements of the surface radiation budget over the United States through the support of 

NOAA’s Office of Global Programs (http://www.srrb.noaa.gov/surfrad/). The six sites 

(Bondville, IL; Boulder, CO; Fort Peck, MT; Goodwin Creek, MS; Penn State, PA; and Sioux 

Falls, SD) are situated in large, flat agricultural areas consisting of crops and grasslands and have 

previously been used to assess the MODIS and ASTER LST&E products with some success 

(Augustine et al. 2000; Wang and Liang 2009). From FLUXNET and the Carbon Europe 

Integrated Project (http://www.carboeurope.org/), we will include an additional four sites to 
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cover the broadleaf and needleleaf forest biomes (e.g., Hainich and Tharandt, Germany; Chang 

Baisan, China; Krasnoyarsk, Russia), using data from the FLUXNET as well as data from the 

EOS Land Validation Core sites (http://landval.gsfc.nasa.gov/coresite_gen.html). Furthermore, 

the U.S. Climate Reference Network (USCRN) has been established to monitor present and 

future long-term climate data records (http://www.ncdc.noaa.gov/crn/). The network consists of 

114 stations in the continental United States and is monitored by NOAA’s National Climatic 

Data Center (NCDC). Initially, we plan to use the Fairhope, Alaska, and Hilo, Hawaii, sites from 

this network. 

10.3 Pseudo-invariant Sand Dune Sites 

For LST validation over arid regions, we will use a set of nine pseudo-invariant, 

homogeneous sand dune sites in the southwestern United States (Hulley et al. 2009a) that were 

used for validating ASTER and MODIS products, and two sites over large sand dune seas in the 

Namib and Kalahari deserts in Southern Africa (Hulley et al. 2009b) for validating AIRS. The 

emissivity and mineralogy of samples collected at these sites have been well characterized and 

are described by Hulley et al. (2009a).  

Pseudo-invariant ground sites such as playas, salt flats, and claypans have been 

increasingly recognized as optimal targets for the long-term validation and calibration of visible, 

shortwave, and thermal infrared data (Bannari et al. 2005; Cosnefroy et al. 1996; de Vries et al. 

2007; Teillet et al. 1998). We have found that large sand dune fields are particularly useful for 

the validation of TIR emissivity data (Hulley and Hook 2009a). Sand dunes have consistent and 

homogeneous mineralogy and physical properties over long time periods. They do not collect 

water for long periods as playas and pans might, and drying of the surface does not lead to cracks 

and fissures, typical in any site with a large clay component, which could raise the emissivity due 

to cavity radiation effects (Mushkin and Gillespie 2005). Furthermore, the mineralogy and 

composition of sand samples collected in the field can be accurately determined in the laboratory 

using reflectance and x-ray diffraction (XRD) measurements. In general, the dune sites should be 

spatially uniform and any temporal variability due to changes in soil moisture and vegetation 

cover should be minimal. Ideally, the surface should always be dry, since any water on the 

surface can increase the emissivity by up to 0.16 (16%) in the 8.2–9.2-μm range depending on 

the type of soil (Mira et al. 2007).  

http://landval.gsfc.nasa.gov/coresite_gen.html
http://www.ncdc.noaa.gov/crn/
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10.3.1 Emissivity Validation 

Seasonal changes in vegetation cover, aeolian processes such as wind erosion, deposition 

and transport, and daily variations in surface soil moisture from precipitation, dew, and snowmelt 

are the primary factors that could potentially affect the temporal stability and spatial uniformity 

of the dune sites. Field observations during the spring and early summer of 2008 revealed that 

the major portion of the dune sites was bare, with the exception of Kelso and Little Sahara, 

which contained sparse desert grasses and reeds on the outer perimeter of the dune field and in 

some interdunal areas. Nonetheless, this does not mean the other seven dune sites did not have 

vegetation in the past, since 2000. The presence of soil moisture would result in a significant 

increase in TIR emissivity at the dune sites, caused by the water film on the sand particles 

decreasing its reflectivity (Mira et al. 2007; Ogawa et al. 2006), particularly for MODIS band 29 

in the quartz Reststrahlen band. However, given that the majority of dune validation sites are 

aeolian (high winds), at high altitude (low humidity), and in semi-arid regions (high skin 

temperatures), the lifetime of soil moisture in the first few micrometers of the surface skin layer 

as measured in the TIR is most likely small due to large sensible heat fluxes and, therefore, high 

evaporation rates, in addition to rapid infiltration. Consequently, we hypothesize that it would 

most likely take a very recent precipitation event to have any noticeable effect on remote-sensing 

observations of TIR emissivity over these types of areas. 

Figure 21 shows emissivity spectra from sand dune samples collected at ten sand dune 

sites in the southwestern United States. The spectra cover a wide range of emissivities in the TIR 

region. These sites will be the core sites used to validate the emissivity and LST products from 

MODIS. Figure 22 shows ASTER false-color visible images of each dune site and comparisons 

between the emissivity spectra from NAALSED and lab measurements. The lab spectra in Figure 

21 show the mean and standard deviation (spatial) in emissivity for all sand samples collected at 

the site, while the NAALSED spectra give the mean emissivity and combined spatial and 

temporal standard deviation for all observations acquired during the summer (July–September) 

time periods. The results show that TES-derived emissivity from ASTER data captures the 

spectral shape of all the dune sands very well. The quartz doublet centered around ASTER band 

11 (8.6 µm) is clearly visible for Algodones Dunes samples, and the characteristic gypsum 

minimum in ASTER band 11 (8.6 µm) is evident from the White Sands samples. 
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Figure 21. Laboratory-measured emissivity spectra of sand samples collected at ten pseudo-invariant sand 

dune validation sites in the southwestern United States. The sites cover a wide range of emissivities in the 

TIR region. 

 

Figure 22. ASTER false-color visible images (top) and emissivity spectra comparisons between ASTER TES 

and lab results for Algodones Dunes, California; White Sands, New Mexico; and Great Sands, Colorado 

(bottom). Squares with blue dots indicate the sampling areas. ASTER error bars show temporal and spatial 

variation, whereas lab spectra show spatial variation. 
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10.3.2 LST Validation 

For LST validation over the sand dune sites, we will use a recently established R-based 

validation method (Coll et al. 2009b; Wan and Li 2008). The advantage of this method is that it 

does not require in-situ measurements, but instead relies on atmospheric profiles of temperature 

and water vapor over the site and an accurate estimation of the emissivity. The R-based method 

is based on a ‘radiative closure simulation’ with input surface emissivity spectra from either lab 

or field measurements, atmospheric profiles from an external source (e.g., model or radiosonde), 

and the retrieved LST product as input. A radiative transfer model is used to forward model these 

parameters to simulate at-sensor BTs in a clear window region of the atmosphere (11–12 µm). 

The input LST product is then adjusted in 2-K steps until two calculated at-sensor BTs bracket 

the observed BT value. An estimate of the ‘true’ temperature (          ) is then found by 

interpolation between the two calculated BTs, the observed BT, and the initial retrieved LST 

used in the simulation. The LST error, or uncertainty in the LST retrieval is simply found by 

taking the difference between the retrieved LST product and the estimate of           . This 

method has been successfully applied to MODIS LST products in previous studies (Coll et al. 

2009a; Wan and Li 2008; Wan 2008). For MODIS data, band 31 (10.78–11.28 µm) is typically 

used for the simulation since it is the least sensitive to atmospheric absorption in the longwave 

region. The advantage of the R-based method is that it can be applied to a large number of global 

sites where the emissivity is known (e.g., from field measurements) and during night- and 

daytime observations to define the diurnal temperature range.  

The archive of all North American MODIS data, as defined by the bounding box 22° to 

71° N and 55° to 169° W, was used in this process for each pseudo-invariant site. Each scene 

was tested to see if it contained the location of interest. Scenes that did not contain the point of 

interest were eliminated, as were scenes in which the point was located either along scene 

margins (the first or last row or column of pixels) or whose viewing angle exceeded 40°. Finally, 

scenes in which the pixel of interest was cloudy, or had greater than three neighboring pixels that 

were cloudy, were eliminated. Cloudiness was defined as less than a 66% certainty that a pixel 

was clear in the M*D35 data. Any scene remaining at this point was used for determination of 

LST. LST data were derived either directly from the M*D11_L2 product or calculated locally 

using the algorithm for the M*D21 product. In the latter case, these calculations were performed 

using the M*D021KM, M*D03, M*D07_L2, M*D10A2, M*D13A2, and M*D35_L2 data as 
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input, as described in Hulley and Hook (2011). In addition to LST, the uncertainty of the value 

was read from the M*D11_L2 data or calculated for the M*D21 data using the values given in 

Hulley et al. (2012). Following LST retrieval, atmospheric profiles over the pseudo-invariant site 

were obtained from either the measurements of the AIRS instrument or from the NCEP GDAS 

model. Both methods were used for MODIS-Aqua data, while only NCEP GDAS data were used 

for MODIS-Terra data. Data retrieved for atmospheric profiles were the geopotential heights, 

temperatures, relative humidities, ozone, and pressure for each geopotential height level of the 

profile, and the PWV for the column as a whole. Together with the original land surface 

temperature from M*D11, these values were then used as input to MODTRAN 5.2 to calculate 

the Top Of Atmosphere Radiance. 

Wan and Li (2008) proposed a quality check to assess the suitability of the atmospheric 

profiles by looking at differences between observed and calculated BTs in two nearby window 

regions with different absorption features. For example, the quality check for MODIS bands 31 

and 32 at 11 and 12 µm is:  

                
       

         
        

      (35)  

where:    
    and    

    are the observed brightness temperatures at 11 and 12 µm respectively, 

and    
     and    

     are the calculated brightness temperatures from the R-based simulation at 11 

and 12 µm respectively. If            is close to zero, then the assumption is that the 

atmospheric temperature and water vapor profiles are accurately representing the true 

atmospheric conditions at the time of the observation, granted the emissivity is already well 

known. Because water vapor absorption is higher in the 12-µm region, negative residual values 

of            imply the R-based profiles are overestimating the atmospheric effect, while 

positives values imply an underestimation of atmospheric effects. A simple threshold can be 

applied to filter out any unsuitable candidate profiles for validation. Although Wan and Li (2008) 

proposed a threshold of ±0.3 K for MODIS data, we performed a sensitivity analysis and found 

that a threshold of ±0.5 K resulted in a good balance between the numbers of profiles accepted 

and accuracy of the final R-based LST. 

Figure 23 shows scatterplots of MODIS retrieved LST (MOD11 in red and MOD21 in 

blue) versus the R-based LST for six pseudo-invariant sites using all MODIS data from 2005. 

The results show that the MOD11 SW LST algorithm underestimates the LST by 3–4 K at all 

sites except White Sands, while the MOD21 algorithm has biases of less than 0.5 K. The 
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statistics of the results in including bias and RMSE are shown in Table 9. MOD11 RMSEs are as 

high as ~5 K at Great Sands, while MOD21 RMSEs are mostly at the 1.6 K level. The reason for 

the MOD11 cold bias is that the emissivity for barren surfaces is assigned one value that is fixed 

(~0.96 at 11 µm). This causes large LST errors over bare sites where the mineralogy results in 

emissivities lower than that fixed value. The MOD21 algorithm, on the other hand, physically 

retrieves the spectral emissivity in MODIS bands 29, 31, and 32, along with the LST, and this 

results in more accurate LST results, particularly over bare regions where emissivity variations 

can be large, both spatially and spectrally. Table 10 shows comparisons between the laboratory-

derived emissivities at each site, along with the mean MOD11 and MOD21 emissivities for band 

31 (11 µm). 

Table 9. R-based LST validation statistics from six pseudo-invariant sand dune sites using all MOD11 and 

MOD21 LST retrievals during 2005.  

  MOD11 Bias MOD11 RMSE 
 

MOD21 Bias MOD21 RMSE 

Algodones (197 scenes) 2.6587 2.7871   0.5018 1.6004 

Great Sands (123 Scenes) 4.708 4.7417 
 

0.4333 1.5237 

Kelso (210 scenes) 4.5234 4.5892 
 

0.6574 1.6494 

Killpecker (147 scenes) 4.072 4.1629   0.0866 1.6845 

Little Sahara (159 scenes) 3.4255 3.468   0.5274 1.6335 

White Sands (102 scenes) 0.0583 0.5455   0.4843 1.3441 

      

Table 10. Emissivity comparisons between lab, MOD11, and MOD21 at six pseudo-invariant sand sites. 

  Lab MOD11 MOD21 

Algodones (197 scenes) 0.963 0.966 0.954 

Great Sands (123 Scenes) 0.944 0.970 0.949 

Kelso (210 scenes) 0.942 0.966 0.949 

Killpecker (147 scenes) 0.942 0.968 0.946 

Little Sahara (159 scenes) 0.953 0.972 0.952 

White Sands (102 scenes) 0.976 0.974 0.967 
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A) Algodones dunes 

 

B) Great Sands 

 
C) Kelso 

 

D) Killpecker 

 
E) Little Sahara 

 

F) White Sands 

 

Figure 23. An example of the R-based validation method applied to the MODIS Aqua MOD11 and MOD21 LST 

products over six pseudo-invariant sand dune sites using all data during 2005. AIRS profiles and lab-

measured emissivities from samples collected at the sites were used for the R-based calculations.  
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